
Scene-based noise reduction on a smart camera
Faouzi Hamdi∗, Tomasz Toczek∗, Barthélémy Heyrman∗ and Dominique Ginhac∗†
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Abstract— Raw output data from CMOS image sensors tends
to exhibit significant noise called Fixed-Pattern Noise (FPN) due
to on-die variations between pixel photodetectors. FPN is often
corrected by subtracting its value, estimated through calibration,
from the sensor’s raw signal. This paper introduces an on-line
scene-based technique for an improved FPN compensation which
does not rely on calibration, and hence is more robust to the
dynamic changes in the FPN which may occur slowly over time.
Development has been done with a special emphasis on real-
time hardware implementation on a FPGA-based smart camera.
Experimental results on different scenes are depicted showing
that the proposed correction chain induces little additional
resource use while guarantying high quality images.

I. INTRODUCTION

CMOS image sensors are well-know to be prone to noise,
especially under low illumination conditions [1]–[3]. Among
them, Fixed-Pattern Noise (FPN) is the pixel-to-pixel output
variation under uniform illumination due to mismatched pixels
and associating readout circuits [4]. Since noise deteriorates
imaging performance, noise reduction techniques must be
performed to circumvent these sensor limitations. Despite
the integration of FPN-reduction circuits, such as Correlated
Double Sampling, CMOS image sensors still have FPN noise
problems, especially in extreme light conditions. So, it is of
the utmost importance to consider efficient image processing
techniques in order to achieve higher-quality images.

The most common way to deal with FPN is through a
calibration step at the factory [5]. The ”FPN frame” is stored
in a ROM and subtracted to each captured frame. However,
since FPN varies slowly over time, this makes an one-time cal-
ibration ineffective and poses additional challenges to achieve
a high quality image. Scene-based methods [6] are natural
candidates because they do not require initial conditions for
the purpose of calibration. FPN is dynamically updated from
the real-time analysis of the scenes captured by the sensor. It
is obvious that such techniques increase system reliability but
have higher computational complexity [7] requiring significant
hardware resources to be processed at the sensor frame rate.
Scene-based methods include two distinct categories: (1) al-
gebraic techniques, and (2) statistical techniques. As defined
in [8], the algebraic techniques make use of global motion
between the frames without making statistical assumptions
about the FPN. Such methods offer good robustness but are
computationally heavy and not really suitable for real-time
correction. On the other hand, statistical techniques model the
FPN as a random spatial noise and estimate the statistics of the
noise to remove it [9]–[11]. Compared with registration-based
methods, statistical approaches have been more widely studied

because of their relatively lower computational complexity,
smaller storage demands, and better realtime performance.

The remainder of this paper is organized as follows. Section
II deals with an improved algorithm based on the most well-
known statistical method developed by Harris and Chiang [9].
Hardware implementation on a FPGA-based platform is then
discussed in Section III. Finally, experimental results on a
set of different realistic scenes and comparisons in terms of
image quality with original Harris and Chiang algorithm are
presented in Section IV.

II. IMPROVED CONSTANT STATISTICS METHOD

We propose to extend the approach developed by Harris and
Chiang [9]. Our objective is to improve the method so as to
make it more flexible regarding the input scene. The original
paper models the non-linear behavior of each photodetector
as an affine function. Each photodetector k is associated with
a pair of scalars ak and bk such that the actual luminance
Ĩk received by the photodetector can be obtained from the
measured one Ik through the relation:

Ik = ak Ĩk + bk (1)

Harris and Chiang assume that the measured luminance over
time has the same mean and the same variance among all the
photodetectors of the sensor. Under these conditions, it can
be shown that for each photodetector k, assuming mk is its
average measured luminance and σk the measured luminance
variance, the following holds:

ĩk =
Ik −mk

σk
and Ĩk = Aĩk +B (2)

There are several easy ways to iteratively estimate mk and
σk, so ĩk can be cheaply computed. The ĩk signal mean is zero
and its variance is unitary, but it is otherwise proportional
to the luminance value plus an offset. Ĩk can be obtained
by knowing the factors A and B, which can be plausibly
estimated by using the least squares method so as to minimize
the error between the measured and corrected pixel values.

Harris and Chiang recommend to move the camera or
otherwise move the objects of the scene during calibration,
but this implies the approach cannot be used to continuously
calibrate the sensor. Whats more, even when the camera
is moving and a dynamic scene is being shot, the mean
and variance hypotheses may not hold. We have observed
that making accurate hypotheses regarding the FPN is much
easier than regarding the scene. So, we propose to adapt this



approach so as to make it work whenever the following is true
for each photodetector k:

1) FPN has only an offset component (no gain component);
2) the mean value of the FPN offset is locally zero;
3) the high spatial frequency component at the correspond-

ing pixel has an average value of zero over time.
Concerning the validity of the first hypothesis, we can

notice that FPN is almost only seen on low luminosity and/or
long exposure shots. If a significant gain component exists,
its influence should be noticeable regardless of luminosity
or exposure. Since it is not the case for almost any visible
light sensor we studied, it means that either no FPN gain
component exist at the photodetector level, or that current
compensation mechanisms for this component work just fine,
unlike those aiming to correct the offset component. The
second hypothesis is more or less justified by assuming that
manufacturing defects occur randomly. The last assumption is
the only one concerning the scene. Since the FPN is mostly a
high frequency component, it is enough to average over time
the high spatial frequencies at each pixel to determine the
noise value, should this assumption be satisfied.

Our method is based on the following principles: 1) remove
the low spatial frequencies from the current frame, 2) apply
the Harris and Chiang method on them, and 3) add them
back to obtain the final image. When applying the Harris
and Chiang method, we will assume that ak = 1 for each
k. Benefits of our method are various: 1) range of scenes
correctly corrected is much wider and, 2) the post-processing
dynamic range adjustment step is no longer necessary. Indeed,
for each photodetector k, let us separate the high frequency
component IHk from low frequency one ILk . Using the previous
notations, we will have:

IHk + ILk = ak Ĩk + bk (3)

Assuming ak = 1 (assumption 1), using the same reasoning
as in the original article but on IHk instead of Ik, we get:

ĩHk = IHk −mH
k (4)

Where mH
k is the average over time of the high spatial

frequency component of the photodetector k. In practice, it
is interesting to consider the column noise as a special case
and to correct it separately, in order to speed up convergence.
This can be done in the same way as pixel correction, but
using a separate estimator for each column j, called m′Hj , and
defined as the average over time of the high spatial frequency
component of the photodetectors of the column j. Assuming
col(k) is the column index of the photodetector k, the final
correction equation is:

ĩHk = IHk −mH
k −m′

H
col(k) (5)

When using this equation, the values (mH
k ) averages must

be the already column-corrected ones. Let us notice that the
ILk component can be considered as noise free according to the
assumption 2. While (̃iHk ) is zero-meaned temporally just as in
the original method, so is (ĨHk ), the high frequency component

of the actual luminance the detector would measure. This is a
consequence of the assumption 3. So, we get:

Ĩk = ĩHk + ILk (6)

This can be computed as we go, confirming that no further
post-processing is needed. Low-pass filtering aside, we will
just need to update the (mH

k ) and (m′
H
j ) estimates at each

pixel read. The cheapest method to do this is to use an
exponential window [12]. We will therefore take a pair of
scalars α and α′, such as, if m̂H

k (n) is the mH
k estimate and

m̂′
H

col(k)(n) is the m′Hcol(k) estimate for the k-th pixel at the
n-th iteration:

m̂H
k (n) = αIHk + (1− α)m̂H

k (n− 1)

m̂′
H

col(k)(n) = αIHk + (1− α)m̂′Hcol(k)(n− 1)
(7)

III. HARDWARE IMPLEMENTATION

As described on Fig. 1, the correction chain can be im-
plemented by a simple pipeline consisting of a low-pass
filter followed by two correction blocks, working respectively
at the column and pixel levels. The high-frequency data is
obtained by subtracting the low frequencies from the raw
signal. Those low frequencies are later added back to the
corrected high-frequency data. The low-pass filter and the
correction block have an average throughput of one datum per
cycle. The correction block has a constant latency of several
cycles. Consequently, using an appropriate delay is required
to synchronize the low and the frequency components before
adding them back together. Since the pixel correction block
needs to store the temporal average value estimate mH

k for
each pixel k, it needs an access to the external memory if
the input resolution is too high. Assuming a resolution of
1280×720 pixels and using 16 bits per estimator, 1.84 MB of
memory are required, i.e. more than most FPGAs can provide
internally. It is possible to prefetch the estimator values and
store them back once updated, using a small on-chip scratch
pad, without affecting the overall correction block latency
or throughput. Conversely, no access to external memory is
required for the column corrector. Indeed, for a resolution of
1280 × 720 pixels, all of the (m′

H
j ) take only about 3.2 KB

and can therefore be stored in on-chip RAM.
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Fig. 1: Proposed FPN correction pipeline

The overall principle of the correction block is shown on
Fig. 2. The main issue when implementing this block is the
storage of the temporal averages for each photodetector, which



must be read and written in a timely manner. This is achieved
by using a small cache capable of prefetching the data from the
SDRAM. The column corrector is very similar, but the cache
is replaced by an on-chip memory containing all the column
average values, and the estimator address counter k is reset on
horizontal synchronization instead of vertical synchronization.
If α (or α′) is a negative power of two, the two multipliers
can be replaced with two shifts and a subtractor.
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Fig. 2: Pixel correction block principle schematic

We have tested two low-pass filter architectures: a classical
rectangle window low-pass and a block computing the average
of all the pixels of a scanline. Our implementation of the
rectangle window low-pass requires 10 adders/subtractors and
two comparisons on values whose sizes are at most 20 bits,
no matter the filtering window size. It also requires an amount
of on chip memory proportional to the height of the filtering
window. The alternative filtering architecture we propose is a
simple set of two counters used to sum all the pixels of a line.
One of them holds the sum of all the pixels of the previous
line, the other holds the intermediate sum of the pixels of the
current line read so far. At the end of each line, the roles of
the two counters are swapped. The “filtered output” is simply
the value of the counter corresponding to the previous scanline
pixel sum, multiplied and shifted so as to get the average pixel
value. It can be thought of as a∞×1 rectangle window filter.
While much simpler, such a filter decreases the PSNR by at
least 5 dB on our test sequences.

IV. RESULTS

We have tested the proposed method by using video se-
quences tainted with artificial noise. The artificial offset noise
used is a uniform pixel noise within ±12.5% of the dynamic
range, in addition to an uniform column noise in this range

as well. An image comparison metric is used to estimate how
much the corrected version differs from the original sequence.
We have chosen to use both the PSNR and the UQI [13]
as such metrics. The UQI roughly corresponds to the human
perception of distance between images. With a dynamic range
of [−1, 1], the best value is 1 whenever the original image
and the test image are identical. In order to work correctly,
statistics based methods need some time for the estimator
values to converge. Therefore, in the rest of this section, the
evaluations of efficiency will be given by averaging the UQI
on the last 12 frames of each test sequence. Similarly, the
mean square error measure used in the PSNR calculation is
also computed on the same frames.

Table I gives correction quality estimations for seven test
sequences. A comparison with a simplified version of the
Harris and Chiang algorithm, altered not to perform any gain
correction, is also provided. Since there is no gain component
to compensate to in our artificial noise, this simplification is
justified. The parameters used for our method are α = 2−5,
α′ = 2−9, 64 × 32 low-pass filter, 16-bit pixel and 20-bit
column estimators. Sequences 1 and 2 use a stationary camera
while some elements of the scenes are moving. Sequence 1
has an uniform background, while sequence 2 has a very
detailed background. Sequences 3 to 7 vary by the level of
luminosity and of contrast. Sequences 3 and 4 are rather
bright, while sequences 5 and 6 are almost pitch dark. High
contrast elements are found on the sequences 4 and 6. The
sequence 7 has a varying degree of illumination over its course.
As expected (the third operating assumption is not met), the
sequence 2 is the least effectively corrected but the proposed
algorithm still outperforms the Harris and Chiang method.
According to PSNR measurements, the sequences 3 and 6
are also poorly corrected, while they are satisfying using a
visual criterion. On the contrary, the corrected version of the
sequence 4 shows visual shortcomings while yielding descent
PSNRs. Globally, the proposed correction method does not
seem to specifically favor bright sequences over dark ones,
and works for different levels of contrast.

We have implemented the proposed corrector on a basic
FPGA-based smart camera built around the general-purpose
Avnet Spartan-6 LX150T development board (based on the
Xilinx XC6SLX150T-3FGG676 FPGA) and an Omnivision
OV9715 image sensor [14] capturing images at resolutions up
to 1280 × 800 at 30 fps. We have implemented the different
parts of the proposed correction pipeline and assembled them
into a pcore for use with the Xilinx EDK. The implementation
itself has been done in VHDL and in Haskell. VHDL was used
for the control-dominated components, for those dealing with
more than one clock domain (typically, at the interface with
the memory controller), and whenever the critical path length
was not a limiting factor. We have used an in-house Haskell
based hardware description embedded language to generate
pipelined netlists from combinatorial datapaths. This allowed
us to easily adjust the pipeline depth, and measure resource
usage and maximum frequency depending on it.

The results are shown on Table II. The version evaluated



Correction quality (UQI / PSNR)
seq. 1 seq. 2 seq. 3 seq. 4 seq. 5 seq. 6 seq. 7

Our method 0.885 0.250 0.940 0.700 0.907 0.827 0.888
/ 34.25 dB / 20.10 dB / 22.23 dB / 31.04 dB / 36.72 dB / 22.22 dB / 33.54 dB

Harris 0.881 0.203 0.510 0.417 0.901 0.795 0.850
and Chiang method / 27.18 dB / 14.59 dB / 12.88 dB / 23.76 dB / 34.29 dB / 16.47 dB / 25.89 dB

TABLE I: Correction quality for seven test sequences

uses a point-to-point (NPI) connexion to the Xilinx MPMC
memory controller, and employs the scanline-averaging ver-
sion of the low-pass filter. Since those are the simplest
possible versions for those two components, the results shown
are upper bound for working frequencies and lower bound
for slice usage. As expected, the higher the pipeline stage
count, the higher the register count and the higher the slice
usage, as more of them are used either as registers without
accompanying logic, or simply as route-thrus. The highest
reachable frequency is around 169 MHz, when using 6 pipeline
stages for the low pass filter and 4 stages per corrector (the
pixel and column correctors share the same architecture, so
their pipelines have the same length). The maximum frequency
goes down when using deeper pipelines due to routing issues.
It is interesting to note that in our test system, we could have
afforded to use single stage correctors, as the sensor input
clockrate is 40 MHz. This is not the case for systems using
better cameras: with a sensor capable of 1080p capture at
60Hz, a working frequency of 125 MHz or higher is necessary,
requiring moderately deep correction pipeline use.

# pipeline stages Frequency Slice usage
Lowpass Corrector # registers # LUTs

1 1 80.652 MHz 580 289
2 2 99.502 MHz 748 280
4 3 140.076 MHz 994 762
5 4 149.410 MHz 1099 745
6 4 169.319 MHz 1172 596
7 5 129.232 MHz 1258 786
8 6 158.278 MHz 1348 854

11 8 148.170 MHz 1546 671
22 16 134.391 MHz 1878 1124

TABLE II: FPGA implementation performance and resource
usage, depending on pipeline depths.

V. CONCLUSION

We have proposed an improved algorithm for FPN correc-
tion in visible light sensors and an associated architectural
pipeline for a FPGA-based smart camera. Its hardware com-
plexity is marginally higher than that of a simple reference
image while it significantly achieves improved quality of re-
sulting images. Contrarily to the original approach we improve
on, it is capable of handling a wide variety of scenes correctly
by separating the signal from the noise in a more reliable
fashion. This is achieved by taking into account information

from the spatial neighborhood of the pixels being corrected.
Finally, our correction pipeline adds little latency in most cases
and hence is suited for incorporation in applications where
this is an issue. A future work perspective is the automatic
detection of static scenes. Indeed, a mechanism to temporarily
prevent the update of estimators when two consecutive frames
are too similar would allow to preserve their correctly com-
puted values when the convergence hypotheses are not met,
further increasing correction robustness.
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