

Silicon PhotoMultiplier cryogenic operation down to 77 K

D. Prêle¹, F. Voisin¹, D. Franco¹, D. Ginhac², K. Jradi², F. Lebrun¹, D. Pellion², S. Perasso¹, A. Tonazzo¹

¹AstroParticule & Cosmology (APC) - CNRS/Paris Diderot University (UMR 7164), Paris, France ²Laboratoire Electronique, Informatique et Image (Le2i) - CNRS/Bourgogne University (UMR 6306), Dijon, France

Introduction

Silicon PhotoMultiplier (SiPM) are extremely sensitive photosensor based on the use of Geiger Mode Avalanche PhotoDiode (GM-APD) sensitive to one photon. Many people cool down SiPM close to 0 °C to reduce the Dark Count Rate (DCR). Moreover, liquid xenon or argon [1] is used as a scintillation liquid to detect Weakly Interacting Massive Particles (WIMP) (candidates for the universe dark matter explanation). The use of SiPM in such cryo. environments is plan.

The use of I(V) curve to extract SiPM parameters

I(V) measurement is an easy way to extract lot of parameters of SiPM as Breakdown voltage V_{BD} , Zener voltage V_Z and Quenching resistance R_Q . Moreover, at cryogenic temperatures this method may be more precise than the dynamic one.

Liquid nitrogen SiPM test setup.

A study of the evolution of SiPM parameters from **room temperature to 77** K is presented and cover a large part of the possible uses of cooled SiPM. We present cryogenic measured parameters (breakdown voltage, junction capacitor, quenching resistor ...) of a commercial SiPM. Evolution of these parameters between room temperature and 77 K is discussed.

R_Q from the forward part of the I(V)

Using the forward bias characteristic of the SiPM, it is possible to extract the value of the **quenching resistor** R_Q , assuming that N cells **forward bias** is similar to a single diode in series with a R_Q/N resistor.

R_Q as a function of the T

 R_Q goes from 100 k Ω at 300 K to 1 M Ω at 77 K. The **fall time increases**. This enhance the after pulse phenomenon at low temperatures and Joule heating.

V_{BD} as a function of the ${\bf T}$

Light source to trig the overall SiPM \Rightarrow breakdown voltage. Linear function with a temperature coefficient equal to -50 mV/K. V_{BD} decreases of more

Silicon PhotoMultiplier :

SiPM is an assembly of Geiger Mode Avalanche Photo-Diode (GM-APD). Geiger mode provides internal gain as large as 10^6 carriers/photon. Indeed, a unique electronhole pair generated by a single photon absorption (photogenerated) leads to million carriers. The increasing current crosses also a **quenching resistor** R_Q [2] which turns-off the avalanche process in few 10 ns (fall time).

Main parameters of GM-APD, and thus of SiPM, are the quenching resistance R_Q , the junction capacitor C_J (which limits the rise and fall time) and the breakdown voltage V_{BD} . The differential resistance of the junction R_{d_j} during the avalanche process is also an interesting parameter allowing to determine this rise time.

Decrease of DCR (Agilent B1500A noise floor $\approx 100 \text{ pA}$). Full latching unexpectedly above the V_{BD} . Different phenomenon than the "Zener" threshold.

junction capacitance as a function of the T

than 10 V (in absolute value) from 300 K to 77 K.

C_J as a function of the bias

References

- [1] DarkSide Collaboration 2008, DarkSide-50 Proposal: A Direct Search for Dark Matter with New Tech. for Reducing Background
- [2] Cova S. et al 1996 Avalanche photodiodes & quenching circuits for single-photon detection (Ap. Optics, Vol. 35 No 12)
 [3] HAMAMATSU datasheet, MPPC (multi-pixel photon counter) S10362-11 series
- [4] Otono H. et al 2007 Study of MPPC at Liquid Nitrogen
 - *Temperature* (Int. Workshop on neaw Photon-Detectors, Kobe, Japan)

<u>Acknowledgments</u> : Measurements has been made with the help of B. Manceur during its internship. Authors are also thanks to M. Piat for cryogenic equipments.

Decreasing of the junction capacitance at low tem-

perature. However, this decreasing is smaller than a factor of 2 between room temperature to liquid nitrogen temperature.

Discussion

 V_{BD} , R_Q and C_J has been measured from 300 K to 77 K on a commercial **SiPM MPPC S10362-11-100C** [3]. It appears a quasi-linear decreasing of the breakdown voltage with a temperature rate of -50 mV/K. Quenching resistance is multiplied by a factor of 10 between 300 K to 77 K. Finally, junction capacitor decreases less than a factor of 2 in the same temperature range. These experimental results give a good idea of the voltage biasing required for MPPC cryogenic operation. Furthermore, they predict an increasing by a factor of 5 of the SiPM fall time at liquid nitrogen temperature. Most of these results has been obtained by using "simple" I(V) measurements and are fully compatible with similar measurements using time response [4].

10th International Workshop On Low Temperatures Electronics - Paris - Oct. 2013