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Abstract. This paper presents SKiPPER, a programming environment
dedicated to the fast prototyping of parallel vision algorithms on MIMD-
DM platforms. SKiPPER is based upon the concept of algorithmic skele-
tons, i.e. higher order program constructs encapsulating recurring forms
of parallel computations and hiding their low-level implementation de-
tails. Each skeleton is given an architecture-independent functional (but
executable) speci�cation and a portable implementation as a generic pro-
cess template. The source program is a purely functional speci�cation of
the algorithm in which all parallelism is made explicit by means of com-
posing instances of selected skeletons, each instance taking as parame-
ters the application speci�c sequential functions written in C. SKiPPER
compiles this speci�cation down to a process graph in which nodes cor-
respond to sequential functions and/or skeleton control processes and
edges to communications. This graph is then mapped onto the target
topology using a third-party CAD software (SynDEx). The result is a
dead-lock free, optimized (but still portable) distributed executive, which
SKiPPER �nally turns into executable code for the target platform. The
initial speci�cation, written in ML language, can also be executed on
any sequential platform to check the correctness of the parallel algorithm.
The applicability of SKiPPER concepts and tools has been demonstrated
by parallelising several realistic real-time vision applications both on a
multi-DSP platform and a network of workstations. It is here illustrated
with a real-time vehicle detection and tracking application.
Keywords: Parallelism, skeleton, Caml, image processing, fast proto-

typing, vehicle tracking

1 Introduction

In recent years, there has been a growing interest in so-called skeleton-based par-
allel programmingmodels [1] [11] in which the programmer's task is to select and
compose instances of pre-de�ned templates, chosen from a �xed repertoire, rather
than to deal with low-level parallel constructs such as message-passing calls or
shared-memory access. The idea is that recurring patterns of parallel compu-
tations can be encapsulated into higher-order program constructs which can
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be parameterized to suit a given parallel application, thus hiding all low-level,
error-prone implementation details to the application programmer. Skeleton-
based programming models are simple, abstract and make it possible to concil-
iate portability and e�ciency: skeletons can be de�ned in a target-independent
manner but their implementation on a given platform| being done once | can
be carefully handcrafted [12]. However, their applicability to general-purpose

parallel programming remains an open question, because it seems very di�cult
(impossible ?) to exhibit a fully generic repertoire of skeletons, i.e one su�cient
to express every parallel algorithm. This limitation does not hold if the class of
encompassed algorithms is deliberately restricted to a given application domain.
In this case, the de�nition of the skeleton repertoire can be made in a bottom-
up manner, starting from an identi�able corpus of applications and/or expert
knowledge. This paper assesses this approach by taking our primary application
domain as target, namely real-time image processing. In this context, we have
found skeletons to be a very e�ective programming paradigm for encapsulating
the expertise gradually gained by parallel programmers and making it readily
available for the rapid prototyping of subsequent applications.

The paper is organized as follows: section 2 briey recalls the most salient
features of the parallel skeleton concept and presents a repertoire of such skele-
tons speci�cally dedicated to real-time image processing applications. Section 3
presents SKiPPER, a complete parallel programming environment built on this
skeleton basis. Section 4 demonstrates the e�ectiveness of the presented concepts
and tools, both in terms of code performance and programmability, through a
realistic case study. Section 5 is a brief survey of related work. Section 6 con-
cludes this paper by summerizing the main results of this work and giving hints
for further investigations.

2 Skeletons for parallel image processing

Within our application domain | low and intermediate level image processing
| a retrospective analysis of legacy implementations on MIMD-DM platforms
(especially the transvision [8] platforms, for which we had a large corpus of
working, hand-coded parallel applications) showed that most of parallel appli-
cations were actually built upon a limited number of recurring patterns. Three
broad classes of patterns could readily be identi�ed:

{ Patterns devoted to \geometric" processing of iconic data. These are all in-
stances of an elementary form of data parallelism in which the input image is
decomposed into sub-domains, each sub-domain is processed independently
with the same function, and the �nal result is obtained by merging those
computed on each sub-domain.

{ Patterns encapsulating generic parallel control structures such as data farms

or task farms. These typically involve processing lists of features when the
size of the list and/or its elements depends on the input data and thus
requires some form of dynamic load-balancing to achieve good e�ciency.
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{ Patterns reecting the iterative nature of the vision algorithms, i.e. the fact
that an embedded vision system does not process single images but contin-
uous streams of images.

From the implementation point of view, each pattern can be be viewed as
a �xed, generic communication harness embedding a set of application-speci�c
sequential functions. Following the skeleton approach, it will therefore be ab-
stracted into a reusable parallel construct, i.e. a higher-order function encap-
sulating all its parallel behaviour and accepting as parameters the sequential
functions. This led to the following four \elementary" skeletons making the ba-
sis of our programming environment:

{ The scm skeleton (Split, Compute and Merge) encompasses the �rst class of
patterns, i.e. those dedicated to regular, data-parallel processing. The scm
skeleton has been illustrated for example in [7].

{ The df (Data Farming) skeleton is an abstraction of the processor farm
model, devoted to irregular data-parallelism. Its implementation relies on
a master process dynamically dispatching data packets to a pool of worker
processes and accumulating partial results until each input data is processed.

{ The tf (Task Farming) skeleton is a generalisation of the df one, in which
each worker can recursively generates new packets to be processed. Its main
use is for implementing the so-called divide-and-conquer algorithms. It will
not be discussed here.

{ The itermem skeletons is used whenever the stream-based model of compu-
tation has to be made explicit, in particular when computations on the nth

image depends on results computed on the n+1th. Such \looping" patterns
are very common in tracking algorithms, based upon system-state prediction,
such as the one presented in section 4.

Practically, each skeleton is given two de�nitions: a declarative one and an
operational one.

The goal of the declarative de�nition, which is written once, is to give the
skeleton an architecture-independent, purely applicative interpretation. Because
of its higher-orderness, this de�nition is classically and elegantly written using
a functional language. For example, here's a declarative de�nition of the df

skeleton in caml, a well-known dialect of the ML functional language[2]:

let df n comp acc z xs = fold_left acc z (map comp xs)

This de�nition states the skeleton semantics as a simple combination of calls to
its functional arguments1. Here, it says that the result of applying (df n comp
acc z) (i.e the parameterized skeleton) to a list xs is obtained by �rst applying
the comp function to each element of the list2 and then accumulating all the
resulting values3. Note that the �rst argument (n), actually related to the oper-

1 In (ca)ml function application associates to the right and is denoted without paren-
thesis, so that f a b reads (f a)(b) or, more simply, f(a,b)

2 map is the caml builtin higher-order function de�ned by map f [x1;x2;...xn] =

[f x1;f x2; ... f xn] where [a;b;...] is the caml notation for lists
3 fold left is the caml builtin higher-order function de�ned by fold left f z

[x1;x2;...;xn] = f ( ... (f (f z x1) x2) ... xn)
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ational de�nition, is not used here. The caml de�nition classically comes with a
type signature, the goal of which is to express all the generic type constraints that
the arguments of the df skeleton will have to meet in order to build consistent
programs. Here's the signature for the df skeleton:

val df : int (* Number of workers *)

-> ('a -> 'b ) (* Compute function *)

-> ('c -> 'b -> 'c) (* Accumulating (folding) function *)

-> 'c (* Initial accumulator value *)

-> 'a list (* Input list *)

-> 'c (* Result *)

Type variables (denoted by letters 'a,...,'c) introduce polymorphism, i.e the
ability for the skeleton to accommodate arguments with various (but related)
types. For example, if the second argument (comp) of df has type 'a->'b (i.e.
function from any type 'a to any type 'b) then its �fth argument (xs) must
have type 'a list (i.e list of 'a), its fourth argument (z) type 'c and its third
argument (acc) type 'c->'b->'c (i.e. function from types 'c and 'b to type
'c).

Being real caml code, the applicative de�nition can be viewed as an exe-

cutable speci�cation, which can be used to assign a target independent semantics
to skeleton-based programs. Practically, this gives the programmer the opportu-
nity to sequentially emulate a parallel program on \traditional" stock hardware
before trying it out on a dedicated parallel target (by supplying relevant input
data, observing results and, if a problem arises, using sequential debugging tools
to overcome it, for example).

The goal of the operational de�nition is to make explicit the parallel be-
haviour of the skeleton by specifying its actual implementation on a given plat-
form. For this a classical representation of skeletons as process network templates

(PNTs) is used. PNTs are incomplete graph descriptions, which are parametric
in the degree of parallelism (for example, in the number of comp nodes for the
df skeleton), in the sequential function computed by some of their nodes and
in the data types attached to their edges. Figure 1 is a representation of a PNT
for the df skeleton on a ring-connected architecture.

M->W

W->M W->MW->M

M->WM->W

x : ’a

result :  ’c

xs : ’a list

y: ’b

Pn

y: ’b

x : ’a

Master<acc,z>

P1

y: ’b

x : ’a

....

....
P0

Worker<comp> Worker<comp>

Fig. 1. A process network template for the df skeleton
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Rectangular boxes represent processors (numbered 0 to n), ellipsis sequen-
tial processes and arrows communications. Four types of processes are involved:
Master for dispatching data items and accumulating results, Worker for apply-
ing the comp function and two auxiliary processes (W->M and M->W) for routing
data

The operational de�nition must be written for each target architecture. It
is of course the implementor's responsibility to prove its equivalence with the
declarative one (i.e. the compatibility of the sequential and parallel semantics).
For the df skeleton, for example, this requires that the acc function is com-
mutative and associative, since the accumulation order in the parallel case is
intrinsically unpredictable.

3 The software environment

The components of SKiPPER programming environment are depicted in �gure 2.

Standard
CAML compiler

C compiler

Sequential
definitions
of skeletons
in Caml

CAML compiler
Custom

of 
sequential
functions

Code
of 
sequential
functions
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of skeletons
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Sequential

Code

Execution on
Sequential Platform

-Code generation

-Parsing

-Type Checking
.ml

let scm =
...
map ...
...

.c

.h

Parallel Implementation

Process
Graph

Source Program

.c

Fig. 2. The skeleton-based programming environment

The source program is a functional speci�cation of the algorithm, in which all
parallelism is explicited by means of composing instances of the aforementioned
skeletons. Each instance takes as parameters application-speci�c sequential func-
tions written in C.

SKiPPER starts from this speci�cation for deriving both a parallel implemen-
tation on target hardware and an sequential emulated version on a workstation.
Only the �rst possibility will be described further in this paper.
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First a custom caml compiler performs parsing and polymorphic type-checking.
The resulting annotated abstract syntax tree is then expanded into a (target-
independent) parallel process network by instantiating each skeleton PNT.

This process graph | whose nodes are associated to user computing func-
tions and/or skeleton control processes and edges indicates communication | is
then mapped onto the target architecture, which is also described as a graph,
with nodes associated to processors and edges representing communication chan-
nels. This task is handled by a third-party CAD software called SynDEx[13]
which performs a static distribution of processes onto processors and a mixed
static/dynamic scheduling of communications onto channels. This tool gener-
ates a dead-lock free distributed executive with optional real-time performance
measurement. This executive takes the form of processor-independent programs
(m4 macro-code, one per processor) which are �nally transformed into com-
pilable code by simply inlining a set of kernel primitives. The code of these
primitives | which basically support thread creation, communication and syn-
chronisation and sequentialisation of user supplied computation functions and
of inter-processor communications | is the only platform-dependant part of the
programming environment, making it highly portable.

4 A realistic case study

SKiPPER has used to parallelize several algorithms for real-time vision applica-
tions including connected-component labelling [7], road-following by white line
detection [6] and vehicle tracking [9]. The latter is illustrated in this section.

A video camera, installed in a car, provides a gray level image of several lead
vehicle (one to three, in practice). Each lead vehicle is equipped with three visual
marks, placed on the top and at the back of it (see �gure 3).

(detected spot)

Window

Mark

Fig. 3. Tracking algorithm

Algorithmically, the application can be divided into two main parts:

{ First, detection of the marks in the image. Marks are detected as connected
groups of pixels with values above a given threshold. Each mark is then
characterized by computing its center of gravity and an englobing frame.
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{ Second, tracking each lead vehicles by a classical predict-then-verify method.
The englobing frames of marks detected at iteration i are used to predict the
position and size of the windows of interest in which the detection process will
search for marks at iteration i+1. This is done using a 3D-modelling of each
vehicle trajectory, coupled to a set of rigidity criteria to resolve ambiguous
cases (occultations, etc). If less than three marks were detected at iteration
i, it is assumed that the prediction failed, and windows of interests are
obtained by dividing up the whole image into n equally-sized sub-windows,
where n is typically taken equal to the total number of processors.

Two skeletons can be put into operation in this application:

{ The input of the detection process is a list of windows. This list may vary in
length (from 3,6 or 9 in normal tracking to n for the reinitialization phase)
and each window may itself vary widely in size (its size depends on the
apparent size of the marks, which in turn depends in the distance to the
lead vehicle). Such dynamic behaviour, involving a very uneven work load,
calls for a df skeleton.

{ The top-level prediction exhibits iterative behaviour, in which results com-
puted at iteration i are used at iteration i+1. This is exactly what the
itermem, whose de�nition is given on �gure 4, is designed for.

outloop

           -> unit                    (* Result (nothing) *)

let itermem inp loop out z x =
  let rec f z = inp

    let z’, y = loop (z, inp x) in

           -> ’a                      (* Input data *)

    out y; f z’
in
f z

val itermem : (’a -> ’b)              (* Input function *)
           -> (’c * ’b -> ’c *’d)     (* Loop function *)
           -> (’d -> unit)            (* Output function *)
           -> ’c                      (* Initial memory value *)

x’ : ’b

z’ : ’c

y : ’d

z : ’c

MEM

x : ’a

Fig. 4. The itermem skeleton

The functional speci�cation of the application can then be expressed as fol-
lows in Caml:

let nproc = 8;;

let s0 = init_state ();;

let loop (state, im) =

let ws = get_windows nproc state im in

let marks = df nproc detect_mark accum_marks empty_list ws in

predict marks;;

let main = itermem read_img loop display_marks s0 (512,512);;

where
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{ init state returns the initial state value for initiating the prediction algo-
rithm (this state contains all the information required for positioning the
windows),

{ get windows extracts the windows of the current image,
{ detect mark and accum marks respectively detects and accumulates the po-
sition and size of marks in the selected windows

{ predict returns both the position of the detected marks at the current
iteration for display and the updated state value for the next iteration.

The associated C prototypes are:

void read_img(/*in*/ int nrows, /*in*/ int ncols, /*out*/ img *im);

void init_state(/*out*/ state *s);

void get_windows(/*in*/ int np, /*in*/ state *s, /*in*/ image *im,

/*out*/ windowList *ws);

void detect_mark(/*in*/ window *w, /*out*/ mark *m);

void accum_marks(/*in*/ markList *old, /*in*/ mark *m,

/*out*/ markList *new);

void predict(/*in*/ markList *marks, /*out*/ markList *ms,

/*out*/ state *st);

void display_marks(/*in*/ markList *ms);

Starting from the above caml speci�cation and C code, SKiPPER has been
used both to check the correctness of the parallelisation process (by using the
sequential emulation facilities mentioned in section 3) and to derive a parallel im-
plementations on a parallel vision machine with real-time video i/o facilities, the
transvision platform [8]. This architecture is built upon Transputer processors
and can be con�gured according to various physical topologies. The experiment
here has been conducted using a ring-topology.

With a ring of 8 Transputers (T9000, 20MHz) operating on a 25 Hz 512�512
video stream, the minimal latencies obtained is 30ms for the tracking phase
and 110 ms for the reinitialization phase, with the application processing each
image of the video stream in �rst case, and one image out of 3 in the second.
These performances are similar to the ones obtained by an existing hand-crafted
parallel version of the algorithm and satisfy the timing constraints of the target
application.

The main lesson drawn from this testbench, however was not on raw per-
formances but on the e�ectiveness of the skeleton approach for writing complex
portable parallel applications:

First, the programmer's work here reduced to writing 6 sequential C func-
tions and the caml speci�cation given above. All underlying parallel implemen-
tation details (including process placement, communication scheduling, bu�er
allocation, provision for deadlock avoidance, etc.) were transparently handled
by the environment. The result is that it took less than one day to get a �rst
working implementation on the target platform and that it was then almost
instantaneous to get variant versions with di�erent numbers of processors. The
previously hand-crafted parallel version had required at least ten times longer
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to implement. Moreover, it could not be scaled in a straightforward way (modi-
fying the number of processors, for instance required signi�cant changes in the
C code).

Second, thanks to the SynDEx retargetable back-end, it would be straightfor-
ward to port the application to another parallel platform, provided an executive
kernel is available for this platform.

Third, the possibility to emulate the parallel code on a sequential worksta-
tion, though not described here has proven to be a very useful approach for
debugging the application functionality without having to deal with a complex
parallel environment. Several bugs in the sequential C functions have been un-
covered this way. Tracking them down in the parallel version would have been
much more di�cult (if not impossible, given the very limited debugging support
o�ered by our machine).

5 Related work

The concept of algorithmic skeletons is not new and many researchers have
worked (and are still working) to demonstrate their usefulness for portable par-
allel programming. Darlington's group at Imperial College [5] shares our view of
skeletons as coordinating constructs for sequential functions written in C or For-
tran, but mainly targets numerical applications with no real-time constraints.
Michaelson's group at Heriot-Watt University [10] use skeleton in ML programs
to denote sites of potential parallelism, leaving the responsibility of expanding
them into parallel constructs to the compiler, on the basis of pro�ling informa-
tion collected by an instrumentation phase. The P3L project at Pisa University
[3] has developed a complete skeleton-based parallel programming language, in
which sequential functions are written in C and skeletons are introduced as spe-
cial constructs. Recently, Danelutto et al. [4] have proposed an integration of the
P3L skeletons within the caml language. Their work is very similar to ours. It is
more general both in terms of the target application domain and expressibility
(their skeletons can be freely nested ours not, in particular) but the provided im-
plementation requires either a good OS-level support (Unix sockets) or a generic
message passing library (mpi), thus precluding their use on embedded an/or
dedicated vision platforms.

6 Conclusion

This paper has presented a methodology dedicated to the rapid prototyping
of image processing applications on dedicated MIMD-DM architectures, based
upon the concept of algorithmic skeletons. This methodology provides a tractable
solution to the parallelisation problem, by restricting the expression of paral-
lelism to a few forms admitting both a well-de�ned abstract semantics and one
or more e�cient implementations. A prototype system level software has been
developed to support this methodology. It uses both a custom ML to process
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network compiler and an existing distributing/scheduling tool to turn a high-
level skeletal speci�cation into executable code. Preliminary results of this sys-
tem | illustrated here with a realistic vision application | are encouraging,
showing a dramatic reduction in development time while keeping satisfactory
performances. Further developments are needed, however, �rst to see whether
the approach can be extended to higher levels of image processing | for which
the higher irregularity of algorithms may require more complex skeletons, and
second to study inter-skeleton transformational rules, which are needed when
applications are built by composing and/or nesting a large number of skeletons.
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