
Machine Vision and Applications (2001) 12: 271–290 Machine Vision and
Applications
c© Springer-Verlag 2001

Fast prototyping of parallel-vision applications
using functional skeletons
Jocelyn Śerot, Dominique Ginhac, Roland Chapuis, Jean-Pierre D́erutin

Laboratoire des Sciences et Matériaux pour l’Electronique, et d’Automatique, Université Blaise Pascal de Clermont Ferrand, UMR 6602 CNRS,
63177 Aubìere Cedex France; e-mail: Jocelyn.Serot@lasmea.univ-bpclermont.fr

Received: 22 July 1999 / Accepted: 9 November 2000

Abstract. We present a design methodology for real-time
vision applications aiming at significantly reducing the de-
sign-implement-validate cycle time on dedicated parallel
platforms. This methodology is based upon the concept of al-
gorithmic skeletons, i.e., higher order program constructs en-
capsulating recurring forms of parallel computations and hid-
ing their low-level implementation details. Parallel programs
are built by simply selecting and composing instances of
skeletons chosen in a predefined basis. A complete parallel
programming environment was built to support the presented
methodology. It comprises a library of vision-specific skele-
tons and a chain of tools capable of turning an architecture-
independent skeletal specification of an application into an
optimized, deadlock-free distributive executive for a wide
range of parallel platforms. This skeleton basis was defined
after a careful analysis of a large corpus of existing parallel
vision applications. The source program is a purely func-
tional specification of the algorithm in which the structure
of a parallel application is expressed only as combination
of a limited number of skeletons. This specification is com-
piled down to a parametric process graph, which is subse-
quently mapped onto the actual physical topology using a
third-party CAD software. It can also be executed on any
sequential platform to check the correctness of the parallel
algorithm. The applicability of the proposed methodology
and associated tools has been demonstrated by paralleliz-
ing several realistic real-time vision applications both on a
multi-processor platform and a network of workstations. It
is here illustrated with a complete road-tracking algorithm
based upon white-line detection. This experiment showed
a dramatic reduction in development times (hence the term
fast prototyping), while keeping performances on par with
those obtained with the handcrafted parallel version.

Key words: Parallelism – Computer vision – Fast prototyp-
ing – Skeleton – Functional programming – CAML – Road
following

Correspondence to: J. Śerot

1 Introduction

It is commonplace to say that parallel programming is dif-
ficult. The tasks of partitioning a problem into parallel ac-
tivities (processes or tasks), mapping and scheduling them
onto processors, and keeping them synchronized (using mes-
sage passing or shared memory) are all non-trivial and place
severe strains on programmers. But programming parallel
machines dedicated to real-time vision is even more diffi-
cult. This is mainly due to the fact that these machines, in
order to cope with the stringent constraints made byon-
the-fly processing of digital video streams – typically 25
512× 512 images per second – while meeting some opera-
tional constraints such as volume or power consumption are
generally built from specific, heterogeneous pieces of hard-
ware – such as digital-signal processors (DSPs) – with very
small or no OS-level support. They therefore lack high-level
parallel programming models and environments which are
available on more traditional stock hardware [38]. The pro-
grammer then has to explicitly take into account all aspects
of parallelism, including task partitioning and mapping, data
distribution, communication scheduling, load-balancing, etc.
Such a detailed control of low-level machine resources might
be necessary when fine-tuning an application to achieve the
highest performances, but is clearly not desirable at thepro-
totyping level, when being able to quickly test various al-
gorithmic and/or parallel implementation schemes is more
important. Moreover, it is well known that programs explic-
itly built upon low-level parallel-programming constructs
frequently suffer from deadlocks, exhibit non-reproducible
errors, and are therefore difficult to test. A consequence of
this is that, with the sparse debugging facilities generally
available on dedicated platforms, it is often very difficult for
the programmer to distinguishalgorithmic bugs (an intrinsic
design error) fromimplementation bugs (a communication
buffer overflow for example). As a result, implementing a
real-time vision application on a dedicated parallel platform
remains a tedious and delicate task, leading to long develop-
ment cycles (in the range of several programmer-months for
the kind of applications presented in Sect. 4). Yet,short de-
velopment cycles are essential at the prototyping level. This
is specially true for many time-critical vision applications,
for which the need to evaluate thedynamic properties of

272 J. Śerot et al.: Fast prototyping of parallel-vision applications using functional skeletons

the algorithm under realistic operating conditions – at least
a dozen images per second for the application presented in
Sect. 4 – effectively rules out any prototyping phase solely
based upon off-line, sequential simulation on stock hard-
ware. Hence, the need for a programming methodology al-
lowing rapid prototyping of real-time vision applications on
dedicated parallel architectures.

This paper proposes such a methodology, based upon the
concept ofparallel skeleton. Skeletons [2, 13, 39] are high-
level programming constructsencapsulating certain common
forms of parallel computations to make them readily avail-
able for the application programmer. Since their introduction
by Cole in [13], skeletons have motivated a significant body
of work, both on theoretical aspects and implementation is-
sues. However, there are relatively few experiences with the
approach applied in practice to realistic, large-scale prob-
lems. This paper tries to fill this gap by demonstrating the
utility of a skeleton-based parallel-programming methodol-
ogy in the domain of real-time vision applications.

It is organized as follows: Section 2 is a general presen-
tation of the so-called skeleton-based parallel-programming
methodology and of its application to real-time image-
processing problems. Section 3 describes a complete parallel-
programming environment (SKIPPER) built upon this ap-
proach and covering all the stages of program development,
from architecture-independent specification to target code
generation. The effectiveness of the proposed methodology
is assessed in Sect. 4, by means of a realistic case study. Fi-
nally, lessons learnt while conducting this work and further
work to be done are summarized in Sect. 5.

2 Skeleton-based parallel programming

Almost every paper dealing with skeleton-based parallel pro-
gramming has its own definition of skeletons. One of the
latest is given by Cole in [26]:

“As with many good ideas, the underpinning obser-
vation is, in retrospect, “obvious”: within the existing
body of parallel algorithms a number of patterns re-
cur frequently. These patterns are composed of com-
putations and the interactions between them and can
be conceptually abstracted away from the details of
the activities they control. Such abstractions have
come to be known asalgorithmic skeletons or simply
skeletons.”

Another definition, more inspired by implementation is-
sues, is given by Bratvold in [6]:

“It has been observed [. . .] that parallel programs
written in explicitly parallel languages consist of
two different kinds of code, often tightly interwo-
ven: pieces oftask-specific code implementing the
individual steps of the algorithm, and code for struc-
turing the program intopatterns of computation and
communication for parallel execution. It is typically
only in the latter kind of code that there is a need
for describing low-level resource allocation and for
dealing with those aspects of parallel programming
known to pose the greatest problems. The number

 FARM(f2))

PARALLEL
COMPILER

SKELETON-BASED

 FARM(f1),
 PIPE(
PGM=

f1()
f2()
...

.c

Sequential functions

Operational
semantics

Declarative
semantics

FARM

PIPE ...

Skeleton library

Sequential
semantics

COMPILER

SKELETON-BASED
SEQUENTIAL

WRITES

SEQUENTIAL
EMULATION

PARALLEL
EXECUTION

SELECT,
INSTANTIATE,
COMPOSEAPPLICATION

PROGRAMMER

parallel code sequential code

Fig. 1. Overview of a skeleton-based parallel-programming methodology

of commonly used patterns is observed to be quite
small [. . .] but the code for their efficient implemen-
tation varies greatly between target machines [. . .].
An appealing approach is to implement efficiently a
fixed repertoire of useful patterns, which can be sub-
sequently scaled and instantiated with task-specific
code during compilation.”

Thus, the basic idea of skeleton-based parallel-program-
ming methodologies is to provide the programmer with a set
of high-level templates (the skeletons) that abstract common
patterns of parallel computation in a parametric way. Com-
mon examples of skeletons are process farms, pipelines, and
divide-and-conquer trees. The repertoire of skeletons acts as
a sort of “parallel toolbox” from which parallel programs
can be built with a minimal concern for low-level details.
The overall methodology is illustrated in Fig. 1, with a very
small program example built of two sequential functions and
two skeletons (a pipeline and a process farm1).

This figure shows the different components from which a
skeleton-based parallel program is built (basically a skeleton
library, a skeleton-based parallel compiler and an optional
sequential compiler) and the role of the application program-
mer in this framework (he writes the application-specific
sequential functions and uses skeletons from the provided
library to describe the parallel structure of its application).
This calls for the following remarks.

First , the work of the application programmer is limited
to the selection, instantiation, and composition of skeletons
taken from the provided library. This has to be contrasted
with the more inventive, but much more tedious and error-
prone, task of writing parallel programs from scratch us-
ing low-level constructs. The programmer is then spared a

1 The semantics of these skeletons will be detailed in Sect. 2.1. For now,
it suffices to know that PIPE performs in parallel several stages of com-
putations – each stage computing a function fi over all the data items
produced by the previous stage – and that FARM applies in parallel its
function argument to all the data items appearing at its input.

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 273

great deal of programming effort and can try many more
implementation alternatives. Skeletons therefore provide a
way to achieve rapid prototyping of applications. More-
over, since the only parallelism in programs arises from the
use of skeletons (all other functions being executed sequen-
tially), the parallel behavior of a program will be entirely
given by the behavior of its constituent skeletons thus offer-
ing reliability (program will no longer crash because of a
bug in a “once-again-reinvented” farm process implementa-
tion for instance) and predictability of performances (the
restrictive form of communication patterns generally embod-
ied by skeletons often makes it possible to provide accurate
cost models in particular). Finally, since skeleton parameters
are ordinary sequential functions2 (written in C in our case),
skeletons favor reusability of sequential code.

Second, each skeleton comes with three semantics:

– a declarative semantics, which gives its “meaning” to
the application programmer in a target-independent man-
ner. For instance, using the following notation for list:
[x1;...;xn], the declarative semantics of the FARM
skeleton could be stated with the equation

FARM(f,[x1;...;xn])=[f(x1);...;f(xn)]

– an operational semantics which describes how this skele-
ton is implemented on a given parallel platform. This
definition can be given, as explained in Sect. 3.2, as a
parametric process network;

– an (optional) sequential semantics, conferring a purely
sequential interpretation to skeletal programs. This will
be used to run them on traditional, sequential platforms
such as workstations, as explained in Sect. 3.4.

Ultimately, there will be as many operational semantics
as there are parallel target platforms3, but they will all share
the same declarative semantics. This provides a certain de-
gree of portability to skeleton-based parallel programs4. It
is, of course, the skeleton implementor’s responsibility to
ensure the compatibility of these semantics, i.e.,to guarantee
that, apart from obvious differences in terms of performance,
the corresponding definitions will give the same results when
applied to the same input sets5

Third , an objection to such a methodology could be that it
only shifts the burden from the application programmer to
the skeleton implementor(s). Implementing a skeleton on a
given platform may indeed be a non-trivial task, requiring
detailed knowledge about low-level machine resources. But
this is only done once and it is therefore reasonable to de-
vote time and energy to it. Moreover, this implementation

2 We will deliberately exclude here the issue of skeleton nesting, i.e.,the
possibility for a skeleton to take another skeleton as an argument, since
this is a rather complex one and the version of SKIPPER described in this
paper does not support it.

3 Most of them will use a common intermediate description level, how-
ever, thanks to parallel implementation techniques presented in Sect. 3.2.1–
3.2.3.

4 Though portability of performances across very different architectures
is a much more difficult problem.

5 For certain skeletons, ensuring this compatibility may require putting
additional constraints on the skeletons’ arguments, as explained later in note
11.

can be carefully handcrafted to make it both reliable and
highly efficient (by taking advantage of architecture-specific
features, for instance). Skeletons therefore provide a radical
solution to the classical ease-of-programming vs efficiency
problem.

This presentation of the methodology is obviously very
general. Many issues that it raises will be discussed in Sect. 3
when describing a suite of tools that practically implements
it. But beforehand, we need to see why and how it can
be refined to be applied to our specific application domain,
namely real-time image processing.

2.1 Parallel skeletons for image processing

Most work on skeletons have proposed “general-purpose”
skeletons. It is clear, however, that many application do-
mains, dealing with specific data and control structures, can
benefit from a skeleton-based approach to parallel program-
ming, since these structures can be captured and abstracted
as skeletons. Working with “domain-specific” skeletons can
also help to solve an often mentioned problem with skeleton-
based approaches, namely the fact that, in theory, nothing
can guarantee that a given set of skeletons will be sufficient
to express6 every parallel algorithm. The profusion of propo-
sitions for skeleton basis (evidenced in surveys like [9] for
example) clearly shows the difficulties encountered in defin-
ing such a basis. Within a fixed application domain, the
problem becomes much more tractable, since the definition
of the skeleton basis can now be made in a true bottom-up
manner, starting from an identifiable corpus of applications
and/or expert knowledge, rather than trying to identify a
priori a – still hypothetical – fully general-purpose skeleton
basis. In this case, skeletons provide a very effective way
of encapsulating the expertise gradually gained by parallel
programmers in the domain and making it readily available
for the rapid prototyping of subsequent applications.

In our case, defining an adequate skeleton basis involved
first a restriction of the application domain and second solv-
ing a “ trade-off” problem:

Restricting the application domain. Given the very wide
range of image processing (IP) techniques – including low-
level tasks (dealing with regular, iconic data, such as convo-
lutions, filters or regular transforms), intermediate-level tasks
(dealing with much more irregular data representations, such
as edges or regions) and high-level tasks (manipulating ab-
stract models for object recognition) – it seems almost as
illusory to consider a complete skeleton basis for IP as a
whole, as is the case for general-purpose programming. Our
first decision, to make the problem tractable, was therefore
to restrict our approach to the low and intermediate levels
of processing. This deliberate limitation can be further jus-
tified by the following reasons. First, low- and mid-level
processing form the first stages of any real vision system
and therefore have the greatest potential for reuse. Second,
they typically process large data sets and so make good can-
didates for parallelism. Last (but not least !), at the time the
project started, we already had substantial experience in the

6 In mathematical terms, will form a complete basis

274 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

related class of algorithms, as well as in the parallel imple-
mentation of these algorithms on multi-processor targets for
realistic, large-scale applications.

Solving the generality-versus-specificity problem. This is
a classic problem when trying to define a skeleton basis, al-
ready pointed out in [35]. Generality here means a small
number of very general, highly abstract skeletons, while
specificity means a larger set of more specialized skeletons.
The latter offers the best opportunities for efficiency – be-
cause implementations can be closely tailored to meet the
requirements of the underlying communication patterns in
particular –, but may require the frequent crafting of new
problem-oriented skeletons when new applications are to be
dealt with. This, in turn, rapidly results in an inflation of
the skeleton basis, compromizing both its understandability
and portability7. On the other hand, more general skeletons
have a greater potential for reuse, but make efficient imple-
mentations harder to find (as well as performance prediction
models). Furthermore, it has been observed that highly ab-
stract skeletons (such as the fold/map homomorphism of
the BMF [37] formalism) often require a non-trivial refor-
mulation of the initial algorithm to accommodate it8.

A major originality of our work was to solve the latter
“ trade-off” problem by adopting a true bottom-up approach,
that is by defining the skeleton basis from a careful analysis
of a large corpus of existing low-to-mid-level vision applica-
tions. By chance we had such a corpus at hand, in the form
of thousands of lines of handcrafted parallel C code imple-
menting various vision applications on several versions of an
MIMD-DM9 machine (the TRANSVISION real-time vision
system [30], built on T800 and T9000 transputers). Examples
of algorithms involved are low-level pre-processing (filter-
ing, edge detection, etc.), spatio-temporal operators (Markov
field analysis, etc.) [10], extraction of geometric primitive
and/or perceptual groupings [29], and tracking of mobile
objects in real scenes [3].

This retrospective abstraction process drew out four
skeletons, called SCM (split compute and merge), DF (data
farming), TF (task farming) and ITERMEM (ITERate with
MEMory).

The SCM skeleton is devoted to regular, “geometric”
processing of iconic data, in which the input image is split
into a fixed number of subimages, each subimage is pro-
cessed independently, and the final result is obtained by
merging the results computed on subimages. The subimages
may overlap and/or not cover the entire input image. This
skeleton is applicable whenever the number of subimages is
fixed and the amount of work associated with each subimage
is the same, resulting in a very even workload. Typical ex-
amples include convolutions, median-filtering and histogram
computation.

The DF skeleton is a generic harness for so-called pro-
cess farms. A process farm is a widely used construct for
data parallelism, in which a farmer process has access to a
pool of worker processes, each of which computes the same

7 An implementation of each new skeleton must be given for every target
architecture !

8 This is admittedly true of the skeletons presented in this paper, but to
a much lesser extent.

9 Multiple Instruction Multiple Data, with Distributed Memory

f(X4)

[X0,..,X5]

worker1 worker2 worker3farmer

Sends data

Y0

z

acc

acc

acc

acc

acc

acc

Processor 0 Processor 2 Processor 3
Y

Y2

Y4

Y5

Processor 1

Y3

Y1

f(X2)

f(X3)

f(X5)

f(X1)

f(X0)

Fig. 2. An interpretation of the DF skeleton

function. The farmer distributes items from an input list to
workers and collects results back. The effect is to apply the
function to every data item. We use a variant of this scheme
in which the results collected by the farmer are accumulated
using a specific function instead of being just added to an
output list.

The DF skeleton shows its utility when the application
requires the processing of irregular data, for instance, an ar-
bitrary list of windows of different sizes. In this case, a static
allocation of tasks10 to processors (like with the SCM skele-
ton) is not always possible and would result, anyway, to an
uneven workload between processors (which, in turn, results
in a poor efficiency). The DF skeleton handles this situation
by having the farmer process directly doling out task allo-
cation to worker processes. Typically, the farmer starts by
sending a packet to each worker, waits for a result from a
worker, and then immediately sends another packet to him.
This is done until no packets are left and the workers are
no longer processing data. Each worker simply waits for a
packet, processes it, and returns the result to the farmer until
it receives a stop condition from the farmer. This technique
gives an inherent, primitive load balancing. It is only effi-
cient, however, if there are more data items than processors.

Figure 2 gives a “static” view of the eminently dynamic
behavior of a DF skeleton implemented on four processors
The input list is [X0;...;X5]. Each worker computes a
value Yi=f(Xi) and returns it to the farmer, where it is
accumulated to the previous results (z being the initial accu-
mulator value). Columns represent processors activity, with
time flowing top-down and boxes corresponding to the se-
quential functions. Arrows denote communications. Note in
particular how the order in which the results are accumu-
lated in the farmer depends on the various processing times
on the workers 11.

The TF skeleton may be viewed as a generalization of
the DF one, in which the processing of one data item by a

10 A task consisting here in the application of a function to a single data
item of the list.

11 For this reason, the operational and declarative semantics of the DF
skeleton will only be compatible if the accumulation function acc is asso-
ciative and commutative, since the former semantics may, in general, cause
partial results Yi to be received and accumulated in any order, whereas
this order is generally left unspecified in the latter.

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 275

inp loop out

MEM

Fig. 3. The ITERMEM skeleton

worker may recursively generate new items to be processed.
These data items are then returned to the farmer to be added
to a queue from which tasks are doled out (hence the name
task farming). A typical application of the TF skeleton is
image segmentation using the classical recursive split-and-
merge algorithm.

The ITERMEM skeleton does not, properly speaking,
encapsulate parallel behavior, but is used whenever the itera-
tive nature of the real-time vision algorithms, i.e.,the fact that
they do not process single images but continuous streams of
images12 has to be made explicit. A typical situation is when
computations on the nth image depend on results computed
on the n − 1th (or n − kth). The overall structure of the
application can then be drawn as in Fig. 3, where inp is
an input process, providing data from the input stream, out
is an output process, displaying results typically, loop the
central looping process, and mem a memory holding results
from previous iterations.

Such “ feedback” patterns are very common in tracking
algorithms for instance, where a model of the system state
is used to predict the position of the tracked objects in the
next image. Another example is motion detection by frame-
to-frame difference. The ITERMEM skeleton will always be
the “ top-level” skeleton, taking as parameter either a sequen-
tial function or a composition of other skeletons. The latter
case is, incidentally, the only situation in which the current
SKIPPER implementation supports nested skeletons.

3 A skeleton-based programming environment

The overall description of the skeleton-based parallel-pro-
gramming methodology given in the previous section delib-
erately remained allusive on several “practical” points. For
instance:

– how is the declarative semantics of a skeleton conveyed
? (Q1)

– how the are skeletal programs written (i.e.,how is skele-
ton instantiation and composition denoted)? (Q2)

– how is the operational semantics of skeletons described
? (Q3)

– what do we exactly mean by “sequential emulation” pro-
grams? Why is it useful? (Q4)

This section aims at clarifying these points by giving an
in-depth description of the tools which form the SKIPPER
parallel programming environment. The general architecture
of this environment is depicted in Fig. 4. Questions Q1 and
Q2 are answered in Sect. 3.1, dealing with the specification
of skeletal programs. Question Q3 is answered in Sect. 3.2,

12 In our case, this stream comes directly from a CCD camera, through
a synchronizing frame grabber

let itermem = ...

.caml

Application-specific
sequential functions

IMPLEMENTATION
PARALLEL SEQUENTIAL

EMULATIONP0 P1

P2 P3

Architecture
description

TARGET-SPECIFIC
BACK_END

Executable
parallel
code

Executable
sequential
code

operational semantics
Skeleton

SKIPPER

let x=..
let y=..
...

.caml

program specification
Skeletal Skeleton

sequential semantics

let scm = ...
let df = ...
let tf = ...

F1() {..
F2() {..

.c, .h

let scm = ...
let df = ...
let tf = ...
let itermem = ...

.caml

Fig. 4. Overview of the SKiPPER parallel programming environment

dealing with the parallel implementation of these programs.
Questions Q4 is answered in Sect. 3.4. The SCM skele-
ton will be used throughout this section to exemplify the
concepts and techniques. Corresponding information for the
three other skeletons (DF, TF, ITERMEM) has been moved
to Appendices 1 and 2, so as not to clutter the text with too
much technical details.

3.1 Program specification

From a programming language perspective, an essential
characteristic of skeletons is their genericity, i.e.,their ability
to be instantiated with application-specific procedures having
various types. Skeletons must therefore be polymorphic and
higher order constructs. Polymorphism means the ability to
encompass a range of data types using a single declaration.
For example, the DF skeleton introduced in Sect. 2.1 will
have to operate on list of data of any type t (not just int,
float, . . . but any structured C type, including user-defined
types). Higher orderness refers to the ability for a function to
accept other functions as parameters and/or to return func-
tions as results. The PIPE skeleton introduced in Sect. 2 will,
for instance, accept two functions f and g (from type t1 to
type t2 and from type t2 to type t3, respectively) and re-
turn a function PIPE(f,g) from type t1 to type t3. The
need for polymorphic, higher order constructs explains why
most of the research on skeletons has been conducted using
functional languages, within which polymorphic higher or-
der constructs are naturally and elegantly expressed as higher
order functions. Note that this does not necessarily mean
that skeletal programs cannot be written using an impera-
tive language like C or Fortran – as evidenced by the P3L
project described in Sect. 5 – but that, in this case, the skele-
ton definitions require meta-language constructs, and hence
more complicated compilation techniques. The C language,
for instance, supports function pointers, but functions cannot

276 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

be created at runtime and cannot have polymorphic type13.
Moreover, the support for data and function polymorphism in
C is rather awkward, requiring either code duplication (using
compile-time template expansion) or jeopardizing run-time
safety (using void * types).

We therefore resorted to a functional programming lan-
guage – CAML – for writing skeleton-based parallel pro-
grams. CAML [14] is a dialect of the well known and largely
used14 ML language [33].

To start here is, in CAML, the declarative semantics of
the SCM skeleton introduced in Sect. 2.1.

let scm n split comp merge x
= merge n (map comp (split n x))

In CAML, the phrase let f <arg1>...<argn>
= <body> is used to introduce a function taking n argu-
ments and whose definition is given in <body>. This def-
inition itself here consists in the application of the merge
argument to both the n argument (the number of subimages)
and the result of the map application (in CAML, function
application is denoted without parenthesis, so that f(a,b),
is simply written f a b). The map built-in higher order
function is used to express the parallel application of the
comp argument to the list of subimages (split n x) ob-
tained by the application of the split argument to the n
argument and the x input data15.

Note that this definition states the skeleton declarative
semantics in a purely applicative manner (as a combination
of calls to its functional arguments), without any reference
to an underlying execution model. It is, at the same time, an
executable specification, which can be used to give a default
sequential semantics to the skeleton, as soon as we have
a sequential definition of the map higher order function in
CAML. This definition is given in Appendix 3. We must
underline, however, that this definition is only given here
to support our claim concerning the concept of executable
specification. The application programmer is definitely not
required to inspect (and a fortiori to understand) it when
writing skeletal programs with the SCM skeleton (this would
require much more knowledge of CAML that is actually
required for using SKIPPER !).

The CAML compiler will infer, from the previous defi-
nition, the following type signature for the scm higher order
function:

val scm : int
(* Type of n, the number of domains *)

-> (int -> ’a -> ’b list)
(* Type of the split function *)

-> (’b -> ’c)
(* Type of the compute function *)

-> (int -> ’c list -> ’d)
(* Type of the merge function *)

-> ’a

13 There’s no way, for instance, to define in C a second-order function
taking an arbitrary function and returning the derivative of this function as
another function – technically speaking to return a closure.

14 For a list of realistic projects using (Ca)ML, see, for instance,
http://www.cs.princeton.edu/∼appel/smlnj/projects.html or
http://pauillac.inria.fr/caml/users programs-eng.html

15 This map higher order function can be formally defined by map f
[x1;x2;...xn] = [f x1;f x2; ... f xn], where [a;b;...]
is the CAML notation for lists

(* This program computes the histogram of an image
* using a geometric partition

in 4 horizontal strips *)

let im1 = get_img 256;;
let h = scm 4 row_block histo merge_histo im1;;
let main = display_histo h;;

Fig. 5. A simple skeletal program exhibiting the SCM skeleton

(* Type of the input data *)
-> ’d

(* Type of the result *)

This type signature (introduced by the val keyword)
gives the type of all the arguments and result(s) (comments
are delimited with (* and *)). Polymorphism comes from
the use of type variables, denoted by letters ’a,...,’d.
Function types are denoted with an arrow, (t1 -> t2 ->
... -> tn -> tr) being the type of a function tak-
ing n arguments of type t1 . . .tn and returning a result
of type tr. For example, the second argument (split)
of the SCM higher order function is a function of type
int -> ’a -> ’b list, i.e., a function accepting an
integer and a value of any type ’a and returning a list of
values of type ’b. The type signature expresses all the type
constraints that the arguments will have to meet in order
to apply the higher order function in a consistent manner.
The sharing of the ’b type variable in the signature of the
scm skeleton will, for instance, preclude its application to
a split function returning (let say) a list of ints and a
comp function taking (let say) a float. This consistency
check, called polymorphic type checking, is carried out by
the CAMLFLOW front-end in SKIPPER (see Sect. 3.2.1).

The declarative definitions for the DF, TF and ITER-
MEM are given in Appendix 1.

Let us now look at how skeletal programs can be de-
scribed in CAML using the SCM skeleton defined above.
This is done by simply describing the dependencies be-
tween the operations involved in the algorithm, using func-
tion and/or skeleton applications on values defined by suc-
cessive let expressions, as shown in Fig. 516.

Here row block, histo, merge histo, get img
and display histo are the application-specific, sequen-
tial functions (written in C). row block decomposes an
image into horizontal subimages (blocks of rows, hence
its name), histo computes the histogram of a (sub)image
and merge histo sums the partial histograms computed
on each subimage into the final one. The get img and
display histo functions, respectively, retrieve the next
image from the video input stream and displays the his-
togram on the screen.

The program – along with the prototype and code for the
row block, . . .display histo functions in this case –
forms the skeletal program specification appearing in Figs. 4,
6 and 12.

16 This form of programming is actually very close to the one used in
data-flow or single-assignment languages like Sisal [31], Lucid [41] or
Signal [4]. These are typically first-order languages, however, and hence
cannot accommodate the skeleton concept.

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 277

Before describing how such a program can be turned into
a form suitable for parallel execution on a target platform (or
sequential emulation on a workstation), the following points
must be made.

First, because of the implicitly sequential evaluation or-
der of the let phrases, all the parallelism is located (re-
stricted) at skeleton-specific higher order function applica-
tions. This is consistent with the approach stated at the be-
ginning of Sect. 2, where the programmer was supposed to
be responsible for explicitly annotating sites of useful par-
allelism.

Second, let us emphasize that relying on application-
specific sequential functions written in C is of great prac-
tical importance: since real parallel applications are rarely
written from scratch – and especially in CAML ! – any
skeleton-based programming system not allowing the reuse
of existing imperative sequential code is likely to be of little
practical utility17. This point is, surprisingly enough (and
apart from the work of Darlington et al. on Fortran-S [18]),
rarely evoked in papers dealing with skeleton-based parallel
programming.

Finally, note that the choice of the CAML language is
by no means mandatory. We could have used plain ML or
just any functional programming language. Apart from a
matter of personal taste, it is mainly justified by the fact that
CAML is publicly available, highly portable, and provides
well-designed easy-to-use facilities for interfacing C and ML
code (the last point being of great practical importance for
the sequential emulation facilities described in Sect. 3.4).

3.2 Parallel implementation

By parallel implementation we refer to the process by which
the parallel operational semantics of the skeletons is made
explicit. Clearly, this phase strongly depends on an ade-
quate intermediate program representation. This represen-
tation must reflect the possibilities of the potential target
architectures without being bound to any one in particular.
A classic one is process networks, in which nodes represent
sequential computing processes and edge data transfers.

The whole compilation process transforms a skeletal pro-
gram such as the one of Fig. 5 into code suitable for execu-
tion on a multi-processor architecture. It can be decomposed
into four steps: process network generation, process template
instantiation, mapping/scheduling and code generation18. It
is illustrated in Fig. 6 (which is a zoom on the left box of
Fig. 4).

3.2.1 Process network generation

This first step turns the CAML functional specification into
a (target-independent) process network. It is handled by a
modified version of the CAMLFLOW tool described in [36].
CAMLFLOW is a CAML-to-data-flow-graph translator. It
performs parsing, type checking and produces a represen-
tation of the dependencies expressed in the program in the

17 Without prejudging, of course, its theoretical utility.
18 Practically, these steps are carried out with an automatically-generated

makefile.

F1

F1

g F2f

MAPPING/SCHEDULING

let scm = ...
let df = ...
let tf = ...
let itermem = ...

.caml

let x=..
let y=..
...

.caml

PROCESS NETWORK
GENERATION

_thread
{
...
}

macro-code

.m4

CODE GENERATION

TARGET-SPECIFIC
BACK_END

INSTANTIATION
PROCESS TEMPLATES

F2

"Skeletal" program specification

F1

F1

.m4

main()
{
...
}

Target C code

F1() {..
F2() {..

.c, .h

Application-specific
sequential functions

Executable
parallel
code

P0 P1

P2 P3

Architecture
description

Skeleton operational semantics

Fig. 6. Parallel compilation scheme in the SKiPPER parallel programming
environment

’c

comp comp comp comp

scm_s<split>

scm_m<merge>

int ’a

’b ’b

’c ’c

’d

...

...

...

’b ’b

’c

Fig. 7. The operational semantics of the SCM skeleton, as a parametric
process network

form of a data flow graph, using a technique called abstract
interpretation [1]. An in-depth description of this technique
is clearly out of the scope of this paper and can be found
in [36]. Let us only say that it allows the parametric pro-
cess network associated with each skeleton to be described
directly in CAML. A parametric process network (PPN) is
a graph of processes explaining the operational semantics
of a skeleton. For the SCM skeleton, the PPN appears in
Fig. 7. This process graph is parametric in the number of
comp nodes, in the type of data items exchanged between
nodes (denoted with type variables ’a . . .’d) and in the se-
quential functions run on the nodes scm s and scm m (this
“parametrization” being denoted with brackets).

With CAMLFLOW this PPN can be completely de-
scribed (encoded) by the following definition:

let scm n split comp merge x =
(scm_m merge) n (pmap comp ((scm_s split) n x)),

278 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

SCM_S<split_fn>
n := read input on port 1
x := read input on port 2
xs[1...n] := <split_fn>(n, x)
for i = 1 to n do

write xs[i] to output port i
done

SCM_M<merge_fn>
n := read input on port 1
for i = 1 to n do

read ys[i] on input port i
done
y := <merge_fn>(n, ys[1],...,ys[n])
write y to output port 1

Fig. 8. The two parametric process tem-
plates (PPTs) used by the SCM skeleton

Fig. 9. The process network for the histogram application

where scm s and scm m are SCM-specific higher order
functions and pmap a built-in higher order function for repli-
cating a computation subgraph19.

The behavior of the scm s and scm m processes is
stored separately as a parametric process template (PPT). A
PPT is a piece of sequential code whose behavior can be spe-
cialized by providing numeric parameters, data types and/or
functional parameters. The pseudo-code of the scm s and
scm m PPTs is sketched in Fig. 8 (the actual code is written
in C and the specialization (instantiation) process is carried
out using macro-substitution).

The process graph and PPTs associated with the DF and
ITERMEM skeletons are given in Appendix 2.

Applied to the program of Fig. 5, CAMLFLOW gener-
ates the process network of Fig. 9. In the latter graph nodes
represent either user-defined sequential functions (get img
or display histo) or PPTs (scm s and scm m), and
edges represent (unidirectional) communications (tagged
with the type of the corresponding data)20.

3.2.2 Mapping and scheduling

This step maps the process network of the application onto
the target architecture. The target architecture is, in the

19 Details on how this replication can be encoded at the language level
can be found in the section of [36] dealing with data parallelism.

20 This figure was automatically generated with a specific, graphical back-
end (using the DOT [25] format) of CAMLFLOW.

most general case, a multi-component graph, built from
different types of processors connected together through a
network of different types of communication components
(point-to-point serial or parallel links, multi-point shared
serial or parallel buses, etc.). This task therefore involves
finding a static distribution of processes on processors and
a static and/or dynamic scheduling of communications on
channels. This is a “classic” problem, for which various
heuristics have been proposed. We solved it using an ex-
isting third-party software called SynDEx [40]. SynDEx is
a CAD software program developed at INRIA, implement-
ing the AAA (Algorithm-Architecture Adequation) method-
ology. SynDEx accepts specifications of an algorithm and
an architecture as graphs and performs a distribution and
scheduling of the former on the latter using an heuristic
based upon minimization of the global latency21. The use of
SynDEx tool for mapping and scheduling the graph of Fig. 9
is illustrated in Fig. 10. The process graph can be recognized
in the lower part of the upper window (labeled edition). The
target architecture is specified in the left-upper corner of
this window. A ring of four processors (labeled P0 to P3)
is used here. The lower window (labeled schedule) illus-
trates the mapping of operations onto processors computed
by SynDex, i.e.,the distribution of operations onto proces-
sors (one per column) and the scheduling of operations (oval
boxes) and communications (diagonal lines) on each pro-
cessor. On the basis of this mapping, SynDEx predicted a
speedup of nearly 3 (0.75 efficiency). To compute this value,
SynDEx clearly needs the duration22 of all the application-
specific functions (row block, histo, etc.). So, practi-
cally, obtaining an accurate prediction requires two passes
with SynDEx: A first pass, with estimations of these dura-
tions provided by the programmer, generates a first, subopti-
mal, parallel program, but from which real durations can be
extracted using the automatic profiling mechanism described
in Sect. 3.3. A second pass, with these real durations, gen-
erates the final program and accurate prediction.

SynDEx uses the result of its distribution and schedul-
ing process to generate parallel code for the application. This
code takes the form of a set of processor-independent pro-
grams (m4 macro-code). There is one program per proces-
sor of the target architecture. The macro-code is built from
a small kernel of processor-independent primitives. These
primitives support boot-loading, static thread creation, inter-
component communications, thread synchronization, inter-
processor communications, and direct call of user-supplied
sequential functions.

21 The latency is defined as the critical timing path of the process network
22 Sequential execution time corresponding to the “height” of the boxes

in Fig. 10. Communication times are computed from the related data types.

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 279

Fig. 10. A SynDEx session

3.2.3 Code generation

The macro-codes generated by SynDEx are finally turned
into compilable code by simply inlining kernel primitives.
As a result, retargeting an application on an architecture
built from a new processor type only requires (re)writing
this set of kernel primitives for this processor, taking into
account the available hardware facilities and the target lan-
guage (C, Fortran, assembler, etc.)23. The final parallel C
code for the target architecture thus takes the form of a set of
C source files (one per processor), in which a main function
contains direct calls to the sequential functions attached to
the scheduled operations, interleaved with the architecture-
specific communication instructions for exchanging data be-
tween processors. Note that, in order to be called directly,
the user-supplied sequential functions must adhere to a fixed
calling convention. Practically, they must have a void re-
turn type, all non-atomic24 must be passed by address, and
all results returned by address. For example, the sequential
functions of the histogram application discussed in this sec-
tion have the following prototypes:

void get_img(/*in*/ int size, /*out*/ image *im);
void row_block(/*in*/ int n, image *im, /*out*/

imageList *ims);
void histo(/*in*/ image *im, /*out*/ histo *h);
void merge_histo(/*in*/ int n, histoList *hs,

/*out*/ histo *h);
void display_histo(/*in*/ histo *h);

23 The kernel definition for our T9000 processor is less than 300 lines of
m4 code

24 By atomic arguments we mean those having non-structured data types,
such as int, float, etc.

with the following type declarations being provided else-
where

typedef struct image { int nr; int nc; ... };
typedef struct { int sz; ... } histo;

3.3 Profiling

An important “by-product” offered by the SynDEx back-
end is the possibility to automaticaly insert chronometric
instructions into the final code, thus allowing real-time per-
formance measurement of the target applications. This prop-
erty proved to be very useful insofar as understanding (and
optimizing) the runtime behavior of parallel programs can
only be done on the basis of accurate profiling information.
This is especially true for a skeleton-based prototyping en-
vironment, for which the most effective way to assess the
suitability of a skeleton in a given application context is
simply to instantiate it and visualize its execution profile in
the running application. It is sometimes argued against this
rather pragmatical approach that the choice of the skele-
tons could (should?) rather be made a priori on the basis
of theoretical performance models. Such models generally
take the form of analytical formulae parametrized in com-
putation and communication costs. Now in most cases, these
costs cannot be easily and/or reliably estimated “off-line” ,
i.e., without precisely running the application on a set of
“ representative” data ! Facilities for rapidly estimating the
various cost factors for a given skeleton instantiation with
various input data profiles are therefore definitely required.
This is precisely what a fast prototyping environment, like

280 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

the one described in this paper, offers, thus making perfor-
mance models if not useless at least not mandatory for the
casual application programmer.

Practically, each of the skeletons proposed in Sect. 2.1,
comes with a variant instrumented version that automati-
cally generates execution profiles at runtime. These profiles
can be viewed and analyzed by existing tools such as the
upshot utility. Figure 11 show the execution profiles gen-
erated by the instrumented version of the SCM skeleton in
the case of the histogram application run on a ring of two,
four, six and eight processors. On these profiles, each line
corresponds to a distinct processor (processors are numbered
from 0 to n− 1). The grey boxes represent sequential com-
putations. Larger boxes corresponding the histo functions
and smaller ones to the row block and merge histo
functions. Processors 1 to n − 1 run only histo. Proces-
sor 0 runs row block, histo and merge histo (apart
from get img and display histo which do not appear
on the profiles). The most noticeable feature of these pro-
files is the very good load -balance achieved by the SCM
skeleton in this case (the only source of innefficiency being
the – inevitable – sequentialization of the functions on pro-
cessor 0). This can be explained by the fact that the amount
of work associated with the histo function is the same on
each subimage. A detailed analysis of these profiles (using
the “zoom” facilities of the upshot utility) will also show
that computations and communications actually take place in
parallel on processor 0 at the beginning of the application25.

3.4 Sequential emulation

By sequential emulation we mean the ability to give a se-
quential interpretation – using a “standard” CAML compiler
– to parallel skeletal programs.

This makes sense because – as long as the sequential
functions of the programs interact only by means of skeleton
composition – the sequential execution order enforced by a
standard compiler is nothing but a particular instance of the
partial execution order specified by the process network of
the application. All that is needed is a sequential semantics,
expressed as an “ordinary” higher order function, for each
skeleton. Fortunately, and as already noticed in Sect. 3.1, a
default sequential semantics is provided “ for free” by the
declarative semantics expressed in CAML as soon as the
latter is based on “standard” higher order functions (such as
map, fold, etc.), which is the case for all the skeletons de-
fined in SKIPPER (Fig. 12). Technically speaking, this also
requires the generation of some kind of stub code to convert
data representations between C and CAML.

Apart from being parallel specifications, programs like
the one given Fig. 5 are therefore also valid CAML pro-
grams which can be run, tested – by supplying relevant in-
put data, observing results and, if a problem arises, using
sequential debugging tools to overcome it – on any “ tradi-
tional” sequential platform before being run on the parallel
target. Since the corresponding parallel operational seman-
tics of the involved skeletons are supposed to be correct,
the application programmer will not even need to perform

25 Thanks to the T9000 DMA capabilites in our case

a

b

c

d

Fig. 11a–d.. Execution profiles of the histogram application: a with 2 pro-
cessors; b with 4 processors; c with 6 processors; d with 8 processors

any debug task at the parallel level. This possibility of emu-
lating parallel programs on sequential platforms to separate
functional from “ implementational” debug has already been
proposed by Danelutto et al. in [15] under the name “ logical
debugging” .

4 A realistic case study

This section illustrates the use of the proposed methodol-
ogy for the parallel implementation of a realistic vision
application. This application is based on a real-time road-

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 281

let itermem = ...

.caml

let x=..
let y=..
...

.caml

let scm = ...

let tf = ...
let df = ...

GENERATOR

F1() {..
F2() {..

.c, .h

SEQUENTIAL
CAML COMPILER

Skeletal
program specification

Application-specific
sequential functions

Executable
sequential
code

Skeleton sequential semantics

STUB-CODE

Fig. 12. Sequential emulation scheme in the SKIPPER parallel program-
ming environment

following algorithm and is part of a larger project dedicated
to computer-aided driving in semi-autonomous vehicles.

4.1 Goal and related work

Road following is an important problem encountered in au-
tonomous vehicles projects as well as in road safety devel-
opments. Its main goal is the estimation of a vehicle location
on a road in order to anticipate its trajectory.

Numerous projects have been designed for solving the
road-following problem by using computer vision. Within
the area of highway applications, several experimental vehi-
cles like VAMORS [21, 22] and MOBLAB [7, 8] have been
designed. Most of them use road extraction techniques based
on the detection of the white lines in the current image and
a road model to predict the position of the lanes in the next
image [12, 21, 23, 24, 27, 28].

For the work described here, a vehicle is equipped with
a monochrome camera which provides 512 × 512 × 8 bits
images at video frame rate (25 im/s). In these images, white
lines are detected and used to compute the vehicle lateral
location x0, its direction angle ψ and the road curvature
C (Fig. 13). We started with an algorithm formulation for
which we already had several working implementations: a
full-fledged sequential version on workstation platforms, a
simplified real-time version for a DSP-based vision system,
and a handcrafted full-fledged parallel version for a MIMD-
DM parallel platform (TRANSVISION [30]). Such a set of
implementations, of course, provides useful reference mea-
sures, both in terms of performance and of development
effort, for assessing the usefulness of the proposed approach
and tools.

4.2 Road modeling

Most of road-following algorithms rely upon an adequate
modeling of the road for computing the vehicle location.
In the case of highway navigation, this modeling can take
advantage of several normalization factors, so that the road
can be assumed to be locally flat, each white line being
viewed as a curve with a continuous dynamic lateral curva-
ture C = 1/R. The 3D model of such a line can then be
expressed (Fig. 13b) as:

x ≈ Cy2/2 + λL and z = 0 ,

with L being the lane width (assumed constant) and λ =
0, 1 or -1 for the central, right or left line of the road,
respectively.

According to several hypothesis [11, 12], the projection
of these equations within the 2D image space of the camera
is given by

u = eu

(
− evz0

2(v − evα)
C +

v − evα

evz0
(x0 − λL) − ψ

)
, (1)

where u, v are the 2D image coordinates of the pixels be-
longing to a white line, α is the inclination angle of the
camera (assumed constant), z0 the camera height (constant),
x0 the dynamic lateral location of the camera (i.e., vehicle),
C the dynamic road curvature, ψ the dynamic vehicle di-
rection angle, and eu, ev constant intrinsic parameters of the
camera.

Among these parameters, the only dynamic ones are C,
x0 and ψ. The state vector of the system will therefore be
defined as X= (C, x0, ψ)t.

The main goal of the algorithm will be to periodically
compute the state vector X(k) at each discret time index k,
using the information provided by the white lines in image
I(k) and Eq. 1.

4.3 Algorithm

The whole algorithm can be divided into an initialization
stage and a core looping process. The former, executed once,
provides initial values for the latter. The core looping process
can be further divided into three steps: prediction, detection,
and updating.

4.3.1 Prediction

The prediction step aims at positioning a set of windows of
interest (WOIs) in the image. The detection step will only
search for white lines (Fig. 14a) in these windows. Compared
to a global search in the whole image, this approach leads
to much lower computational times and significantly reduces
the risk of false detection for white lines.

Windows are equally dispatched along Nr horizontal
rows, each row holding three windows (one per white line).
The vertical location (v) of the horizontal rows and the size
of the windows on one row are constant and have been ex-
perimentally chosen26, but the size of the windows decreases
with the vertical position of the corresponding row.

26 They are set by the initialization stage

282 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

Vehicle

b

x0

x0+L

ψ

a

camera viewing direction0

road reference

camera reference

ψ

α

u

v

y

x

z

−L

R = 1/C

R = 1/C

Fig. 13a,b. The vehicle on the road and the modeling parameters

The prediction step is then responsible for updating the
horizontal positions of the three windows on each horizontal
row. This can be done, knowing the predicted state vector
X(k|k−1), its covariance C(k|k−1), and by using Eq. 1. The
parametric equations (uλ, vλ) of each white line in the image
are computed and the WOIs are centered on the predicted lo-
cations. This requires giving an initial value to the state vec-
tor X at the first iteration. This value can be deduced from a
global image analysis or simply set to a pre-defined constant.
We use the second solution and set X(0) = (0, L/2, 0)t, as-
suming the vehicle to be initially located in the middle of
the right lane of the road.

To summarize, the inputs of the prediction step are
the state vector X(k|k − 1), its covariance matrix, and
the image I(k). Its output is a list of WOIs WS(k) =
{W1,W2, · · · ,WNw

}, where Nw is the actual number of
WOIs to process27.

4.3.2 White lines detection

This step performs the detection of the position and orien-
tation of white lines within the selected WOIs. It works by
approximating a white line in a WOI by a rectilinear segment
(Fig. 14b).

Localization of the approximating segment is carried out
by first computing the horizontal gradient value for each
point and then selecting the point with the maximum value
in each row. The best fitting segment is finally obtained by
applying a Hough transform to the resulting set of points.
Two (constant) thresholds are set to eliminate false detec-
tions: a minimum value for the gradient and a minimum
number of candidate points for the Hough transform.

At the end of the procedure, for each WOI i in which
the detection has succeeded, the coordinates (ui, vi) of one
point of the segment and its slope pi are obtained.

The detection step therefore takes as input a list of WOIs
WS(k) = {W1,W2, · · · ,WNw} and outputs a list of detec-
tion results DS(k) = {D1, D2, · · · , DN}, with N ≤ Nw

and Di = (ui, vi, pi), where (ui, vi) are the coordinates of a
point belonging to the white line edge in window Wi, and
pi = du

dv (ui, vi) the orientation of the approximating segment
at this point.

27 Nw ≤ 3 × Nr , due to clipping effects

a

point (ui; vi)
t white line

Window
of interest

with slope pi

detected segment

b

Fig. 14a,b. Interest zones used for the detection procedure. a location of
WOIs; b white line detection in each window

4.3.3 Updating

The features DS(k) computed by the detection step in the
WOIs are used to update the dynamic parameters (C, x0
and ψ) of the model. Formally speaking, this involves both
providing the best estimations X(k|k) and C(k|k) of the
state vector and its covariance for the current iteration and
predicting their values X(k+1|k) and C(k+1|k) for the next
iteration.

This is classically done using a Kalman filter and a state
formalism described by the following equations:
{
X(k + 1) = AX(k) + v ,
Y (k) = HX(k) + w ,

where:

– X(k) = (C, x0, ψ)t represents the state vector at discrete
time k,

– A, the state matrix, taking into account the vehicle speed
V and the time interval between updates ∆t. It is given
by

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 283

Fig. 15. Superimposed model after updating stage

A =

 1 0 0

0 1 V ∆t

0 0 1

– H = (h1a,h1b, . . . ,hia,hib, . . . ,hNa,hNb)t is the mea-
sure matrix (see later),

– Y (k) = (y1a, y1b, . . . , yia, yib, . . . , yNa, yNb)t is the ob-
servation vector. This vector gathers two kinds of mea-
sures, yia and yib, which are in turn computed from the
detection results Di = (ui, vi, pi) using the following
equations:
– yia = ui + eu

vi−evα
evz0

λL. These observations take into
account the ui and vi detection results. The corre-
sponding measure submatrix is hia = (− euevz0

2(vi−evα) ,
eu(vi−evα)

evz0
,−eu) and yia = hiaX .

– yib = pi + eu

evz0
λL. These observations take into ac-

count the pi detection result at coordinates (ui, vi).
The corresponding measure submatrix is hib

= (euevz0
2(vi−evα)2 , eu

evz0
, 0) and yib = hibX .

– v and w are noises assumed white, gaussian and uncor-
related.

Strictly speaking, the algorithm result is the estimated
state vector X(k|k), since this vector contains, for instance,
all the information required for controling an autonomous
driving process. For tuning and demonstration purposes, it
is also very useful to explicitly display this vector, for in-
stance, by drawing the projection of the 3D reconstructed
road model on the acquired image using Eq. 1 (see Fig. 15).
This kind of super-imposition of a reconstructed model on
the real scenes has proved to be very useful in the prototyp-
ing phase of the algorithm.

4.4 Parallelization

Figure 16 is a data-flow-like representation of the algorithm,
showing the different steps involved along with the various
data dependencies (each edge is labeled with the name and
type of the corresponding data).

From this representation, it is clear that the whole process
is an instance of the ITERMEM skeleton, in which the input
function is getimg, the output function is visualize,
the loop function is update ◦ detect ◦ predict, and
the memory holds a value of type state (where state
contains both the state vector X and its covariance C).

So, we can start with the following top-level CAML
program (values such as S(k|k − 1) are here represented by
identifiers such as skkp, where p stands for “previous”)

getimg

k = k + 1

S(kjk � 1) : state

init

predict

detect

update

visualize

S(0) : state

S(k + 1jk) : state

S(kjk) : state

DS(k) : rdetect list

WS(k) : WOI list

I(k) : image

Fig. 16. Data-flow representation of the road-following algorithm

let loop (skkp, ik)
= (* ... still to write ... *);;

let s0 = initstate ();;
let main

= itermem getimg loop visualize s0 (512,512);;

with the following type definitions and prototypes for the
sequential C functions:

typedef struct { int x,y; int nr,nc; byte *data;
... } image;

typedef struct { float X[3]; float C[9]; } state;
void getimg(/*in*/ int nrows, /*in*/ int ncols,

/*out*/ image *im);
void init(/*out*/ state *st);
void visualize(/*in*/ state *st);

The next step consists in identifying useful parallelism
in the central loop function.

Given its low complexity and small data set, the pre-
dict function is only responsible for a very small per-
centage of the total computation cost of the loop function.
So we are left with the parallelization of the update and
detect functions.

For detect, it can be noted that, because of the clip-
ping effect involved by the retro-projection process28, the
size of its input list (ws) may vary from one iteration to
another. Furthermore, the size of each WOI, and hence the
complexity of the detect process itself vary. This results
in a rather uneven global workload for the detect process.
This naturally calls for a DF skeleton. So we could write

let loop (skkp, ik) =
let ws = predict skkp ik in
let ds = df detect accum [] ws in
update skkp ds;;

where

28 Some WOIs may “ fall outside” of the 2D image plan. In this case,
they are simply discarded.

284 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

K(2N)
S(kjk)

Y (k) = (y1a; y1b : : : yNa; yNb)

S(kjk � 1) =

�
X

C

�

a

K(1) K(1) K(1) K(1)S(kjk � 1) =

�
X

C

�
y1a y1b

S(kjk)

..............

yNbyNa

b

Fig. 17a,b. A possible optimization of the Kalman filter implementation. a

– predict is the sequential C function implementing the
prediction step:

void predict(/*in*/ state *skkp,
/*in*/ image *ik,
/*out*/ woiList *ws);

– detect is the sequential C function performing the de-
tection task within one WOI

typedef struct { int u,v; int du,dv; ... } woi;
typedef struct { int ui,vi; float pi; ... }

rdetect;
void detect(/*in*/ woi *w, /*out*/ rdetect *d);

– accum just performs the accumulation of detected fea-
tures in a list

void accum(/*in*/ rdetectList *old,
/*in*/ rdetect *d,
/*out*/ rdetectList *new);

– update takes into account the detected features to com-
pute both the updated state (S(k|k)) and its predicted
value for the next iteration (S(k + 1|k))

void update(/*in*/ state *skkp,
/*in*/ rdetectList *ds,
/*out*/ state *skk,
/*out*/ state *xkkn);

– [] is a pre-defined atom denoting an empty list

With this solution, the update function is responsible
for applying the Kalman filter over the whole data set ac-
cumulated by the (farmed) detect function. If N detec-
tion results are obtained, this involves inverting a 2N × 2N
matrix. If computed sequentially, this leads to prohibitive
execution times for the update function29. One solution
would be to parallelize the matrix inversion, using some
well-known algorithm from the parallel literature. Another
approach is to rely on the fact that, if we assume that the de-
tection results are not correlated, it is possible to replace the
application of one Kalman filter operating on a 2N vector by
the successive applications of 2N Kalman filters operating
on scalars. This transformation is depicted in Fig. 17. In this
case, the application of the Kalman filter can be carried out
as soon as the corresponding detection result is available.

29 All gains obtained by the parallelization of detect are lost due to
the cost of the sequential matrix inversion

These successive applications can therefore be “ lifted
up” in the accum function of the DF skeleton implement-
ing the detection step. The updating of the state vector is
then performed in an incremental manner and in true par-
allelism with the detection functions (the latters running on
the worker processors, the former on the master processor).
The update function30 is now only in charge of computing
the predicted state S(k + 1|k) from its updated value S(k|k).

The loop function is now rewritten as follows:

let loop (skkp, ik) =
let ws = predict skkp ik in
let skk = df detect accum skkp ws in
update skk

with the following prototypes for the variant C sequential
functions

void accum(/*in*/ state *before,
/*in*/ rdetect *d,
/*out*/ state *after);

void update(/*in*/ state *skk,
/*out*/ state *skk,
/*out*/ state *skkn);

Note also that an explicit accumulation of the detection
results in a list is no longer needed since the previous state
value S(k|k − 1) now directly serves as the initial value for
the accum folding function.

4.5 Results

Starting from the formulation given in the previous section,
the suite of tools described in Sect. 3 can be used both to
check the correctness of the parallelization process (by us-
ing the sequential emulation facilities) and to automatically
derive parallel implementations. For the latter, we specifi-
cally targeted a multi-processor vision machine with real-
time video i/o facilities, the TRANSVISION platform [30].
This architecture is built upon T9000 Transputer proces-
sors and can be configured according to various physical
topologies31. The experiment here has been conducted using
a ring-topology. All processors can simultaneously synchro-
nize on the video stream, so that true real-time processing
(25 images/s) in MPMD (Multiple Program Multiple Data)
mode is possible (for a total compute time not exceeding
40 ms, of course).

Performance results are shown in Fig. 18a,b for three val-
ues of the Nr parameter (number of rows carrying WOIs, as
defined in Sect. 4.3.1). The higher Nr is, the more robust the
algorithm is, since this corresponds to a larger observation
set, and hence allows a more precise reconstruction of the
road model (another possibility when increasing the number
of WOIs would be to handle more than three white lines,
but this case is not illustrated here).

With a ring of Np = 8 transputers operating on a 25-Hz
512 × 512 video stream, the minimal execution times ob-
tained range from 55 ms (for Nr = 5) to 70 ms (for Nr = 7),

30 Strictly speaking, it should not be called update any longer
31 The TRANSVISION machine was the only platform available at the

time the work reported in this paper was conducted. Work is underway
to port the SKIPPER programming environment to more recent hardware
(a DEC-Alpha-AXP21066-based machine and a Beowulf-style network of
PCs)

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 285

50

100

150

200

250

300

1 2 3 4 5 6 87

T
O

T
A

L
 E

X
E

C
U

T
IO

N
 T

IM
E

 (
m

s)

NUMBER of PROCESSORS

Nr=5
Nr=6
Nr=7

a

1

1.5

2

2.5

3

3.5

4

1 2

4.5

3 4 5 6 7 8

R
E

L
A

T
IV

E
 S

PE
E

D
U

P

NUMBER of PROCESSORS

Nr=5
Nr=6
Nr=7

b

Fig. 18a,b. Total latency and speedup for Nr = 5, 6, 7 and Np = 1 to 8

giving absolute speedups of nearly 4 (0.5 efficiency). This
leads to a maximum effective throughput of 12 images per
second, with the algorithm processing one image out of
two32. Such performances satisfy the timing constraints of
the target application and are similar to the one obtained by
the handcrafted parallel version (the latter being estimated
at 40 ms, after application of a sequential correction factor,
since it was obtained on a machine equipped with slower
T800 processors). Figure 19a–d gives the execution profiles
of the application for Nr = 5 (leading to a maximum of 15
WOIs) and Np = 2, 4, 6, 8 (leading to 1,3,5, and 7 workers
for the DF skeleton). Note that these execution profiles were
simply and automatically obtained by using the instrumented
version of the DF skeleton, with absolutely no change to the
application code. Only the acc (here accum) and f (here
detect) DF parameters are represented here as horizon-
tal boxes with length proportional to their execution time.
Horizontal lines correspond to processors (processor num-
bered 0 is the farmer, others are workers). Three points may
be underlined: first is the large variability in the execution
times of the detect function (on processors 1 to 7). This,
of course, is a direct consequence of the variability in the
size of the wois and subsequently justifies the use of the DF
skeleton for this application step. Second is the very small
execution times for the accum function (on processor 0),

32 If it takes between 40 and 80 ms to process image i, image i+1 (40 ms
later) is lost and all processors will synchronize on image i+2 (80 ms later)

a

b

c

d

Fig. 19a–d. Four execution profiles for the road-following applications;
a with 2 processors; b with 4 processors; c with 6 processors; d with 8
processors

thanks to the Kalman transformation introduced in Sect. 4.4.
As a result, processor 0 is idle most of the time. This must
not be interpreted as an intrinsic flaw of the DF implemen-
tation. Rather, because the acc function is computed on the
farmer in true parallelism with the f one on the workers,
the farmer idle time would decrease as soon as this function
takes longer to execute, and this without increasing the total
execution time. Finally, the automatic load-balancing effect
provided by the dynamic dispatching of the N WOIs is ob-
vious in these figures, even if a slight degradation of this
balancing effect is observed for Np > 5. This can be ex-

286 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

plained by the fact that the ratio N/Np is then too small for
allowing a uniform distribution. This also accounts for the
rather low efficiency for the largest values of Np (maximum
speedup is 4.2 for eight processors). Note that increasing the
Nr number, in order to increase the number of dispatched
WOIs – and hence to allow a better load balancing among
workers – does not help significantly, because the number
of dispatched WOIs (N) is practically limited by clipping
effects (even with Nr = 7, it practically never exceeds 17,
for a theoretical maximum of 3 × 7 = 21).

We must say here that the main lesson drawn from this
experiment, however, was not on raw performances but on
the effectiveness of the skeleton approach and of the pro-
posed suite of tools for implementing complex real-time vi-
sion applications on parallel platforms.

First, let us recall that the programmer’s work here
reduced to writing seven sequential C functions (init,
predict, detect, accum, update and visualize)
and the seven-liner top-level CAML specification. Moreover,
most of these functions could be derived from an exist-
ing sequential implementation of the algorithm. All underly-
ing parallel implementation details (including process place-
ment, communication scheduling, buffer allocation, provi-
sion for deadlock avoidance, etc.) were transparently han-
dled by the environment. Two numbers may give an idea of
the “added value” provided by this environment:

– first, 6000 lines of parallel C code were generated start-
ing from about 1000 lines of sequential C. This 6:1 ratio
can be viewed as a measure of the complexity added
when passing from the sequential formulation of an al-
gorithm to a parallel one.

– second, the code generated by the back-end for each
processor contains about 50 semaphores acting as syn-
chronization points between one computation thread and
four communication threads. This can be attributed to
the runtime complexity of the process farm protocol.

The result is that it took less than 2 days to set up a first
working implementation on the target platform and that it
was then almost instantaneous to obtain variant versions
(with different values of Nw, of Np, etc). Compared to the
previously handcrafted parallel versions, this represents dra-
matic savings in development effort, since these version had
taken at least ten times longer to implement and cannot be
scaled in a straightforward way (modifying the processor
number, for instance, required significant changes in the C
code). Needless to say that, because of the complexity of
the farming protocol, these handcrafted versions were never
proved deadlock free.

Second, thanks to the SynDEx retargetable back-end, it
would be straightforward to port the application to another
parallel platform, provided an executive kernel is available
for this platform. This has been demonstrated, at least for
a network of Ethernet-ed Sun workstations (although the
performance is in this case rather disappointing, due to the
very high latency of Ethernet).

Third, the possibility to emulate the parallel code on a
sequential workstation (described in Sect. 3.4) has proved
to be a very useful approach for debugging the application
functionality without having to deal with a complex paral-
lel environment. Several bugs in the sequential C functions

have thus been uncovered. Tracking them down in the par-
allel version would have been much more difficult (if not
impossible, given the very limited debugging support offered
by our machine).

Last, the availability of instrumented (profiled) versions
for the chosen set of skeletons, delivering execution pro-
files without any intervention in the application code, greatly
eases the interpretation of the parallel execution results, even
for programmers not familiar with the underlying implemen-
tation details.

5 Related work

Given the promising features of skeleton-based approaches
to parallel programming stated in Sect. 2, it is not surpris-
ing that many groups have worked (and are still working)
on skeletons, both from a theoretical point of view and on
practical implementations. Since a complete survey is out of
the scope of this paper, we will only cite here the projects
whose goals are closest to ours. A more thorough survey
can be found in [9] and the article of Cole in [26].

Darlington’s group at Imperial College London has thor-
oughly explored the issues related to the implementation of
a skeletal parallel-programming environment [17, 19, 20].
Their approach shares our “ layered” view of skeletons as co-
ordinating constructs for sequential functions written in an
imperative language. In [18] for example, the SCL (Struc-
tured Coordination Language) language is used to coordinate
sequential Fortran code. Examples are only given however
for rather simple linear algebra algorithms and run on a Fu-
jitsu AP-1000.

The P3L project at Pisa University [2, 16] has devel-
oped a fully fledged parallel-programming language based
on the concept of skeletons and associated implementation
templates. A distinction is made between task-parallel skele-
tons (farm, pipe), data-parallel skeletons (map, reduce)
and control skeletons (loop). Sequential parts of a P3L ap-
plication may be written in many sequential languages (C,
Pascal, etc.) and skeletons are introduced as special con-
structs using a C-like syntax. The P3L compilers generate
code for transputer-based Meiko machines and for PVM run-
ning on a cluster of UNIX workstations. Recently, Danelutto
et al. [15] have proposed an integration of the P3L skele-
tons within the CAML language, making program specifi-
cations looking very similar to ours (with a similar con-
cern for sequential emulation, for instance). But both P3L
and OcamlP3L require either a good OS-level support (Unix
socket) or a generic message-passing library (MPI), for their
implementation. This precludes their use on heterogeneous
and/or dedicated vision platforms.

Michaelson’s group at Heriot-Watt University in Edin-
burgh has significant experience in the application of func-
tional programming to vision applications [5, 32, 34]. Skele-
tons are defined as higher order functions in ML and their lat-
est definition of a vision-specific skeleton basis is very sim-
ilar to ours [with comparable definitions for df and tf, and
gd (grid-decomposition) corresponding to our scm]. Their
work differs from ours in three points, however. First and
most noticeably, their goal is an implicitly parallel system
within which the decision of expanding a skeleton higher

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 287

order function into parallel constructs at the implementation
level is taken by the compiler33 and is not in the program-
mer’s hand. Second, no provision appears to be made for
(re)using sequential functions written in C (all the program
is written in ML). Finally, they never seem to have targeted
dedicated platforms with real-time, on-the-fly processing ca-
pabilities (results are given for a Meiko CS, a network of
PCs and a Fujitsu AP-1000).

6 Conclusion and future work

In this paper, the skeletal approach to parallel-program de-
velopment is assessed in the context of real-time image pro-
cessing, to see whether it can provide a solution to the prob-
lem of fast prototyping of vision applications on dedicated
parallel hardware.

This assessment has been carried out by first identifying a
small number of domain-specific skeletons and then building
a suite of tools capable of turning a high-level, architecture-
independent specification of an algorithm into executable
parallel code.

The conclusions, supported here by a realistic case study,
are very encouraging. First , the “off-the-shelf” style pro-
vided by the skeleton approach effectively provides dramatic
savings in development effort, allowing the application pro-
grammer to both concentrate on truly algorithmic aspects
rather than on low-level implementation details and to try
and evaluate a large number of parallelization schemes. Sec-
ond, this significant increase in programmability is not ob-
tained at the price of a significant decrease in efficiency, at
least for the examples presented in this paper. The skele-
tons may, in fact, be viewed as a very effective way to en-
capsulate and reuse the expertise gained by skilled parallel
programmers. Third, and thanks to a retargetable back-end,
the portability of the tools remains high (the porting effort
is here reduced to reimplementing a bunch of primitives for
a small executive kernel).

The work described here also helped in identifying sev-
eral key issues in any skeleton-based parallel-programming
environment. These issues, which will form the basis of our
future work, are the possibility of freely nesting skeletons
(currently limited to the ITERMEM skeleton). This possibil-
ity was not needed for the kind of algorithms we dealt with,
but may prove essential for more complex applications. In
the same vein, the specification and implementation of vari-
ous inter-skeleton transformational rules [5] for optimization
is likely to become inevitable (the simple composition of two
scm skeletons, for instance, may become very inefficient if
both of them have to split and merge large blocks of im-
ages, but this can be optimized away if the splitting and
merging functions are identical). Finally, it remains to be
seen whether the whole approach can be extended to higher
levels of image processing, for which the irregularity of al-
gorithms is much higher and may prevent the identification
of highly reusable skeletons.

33 On the basis of profiling information collected by an instrumentation
phase.

Acknowledgements. The authors would like to thank the anonymous ref-
erees for many insightful comments which led to improvements in this
paper.

References

1. Abramsky S, Hankin C (1987) Abstract Interpretation of Declarative
Languages. Ellis Horwood, Chichester, U.K.

2. Bacci B, Danelutto M, Orlando S, Pelagatti S, Vanneschi M (1995)
P3L: A Structured High-Level Programming Language and its Struc-
tured Support. Concurrency – Pract Exper 7(3): 225–255

3. Bellon A, Dérutin JP, Heitz F, Ricquebourg Y (1994) Real-time col-
lision avoidance at road-crossings on board the Prometheus prolab-2
vehicle. In: Intelligent Vehicles Symposium, Paris, Oct 1994

4. Benveniste A, Le Guernic P, Jacquemot C (1991) Synchronous pro-
gramming with events and relations: the SIGNAL language and its
semantics. Science of Computer Programming 16(2): 103–149

5. Bratvold TA (1994) Skeleton-Based Parallelisation of Functional Pro-
grams. PhD thesis, Heriot-Watt University, Edinburgh

6. Bratvold TA (1992) Determining useful parallelism in higher order
functions. In: Kuchen H, Loogen R (eds) Proceedings of the 4th In-
ternational Workshop on Parallel Implementation of Functional Lan-
guages. Technical Report No. 92–19, RWTH Aachen, Aachen, Ger-
many

7. Broggi A (1995) An image reorganization procedure for automotive
road following systems. In: International Conference on Image Pro-
cessing, Washington, DC, Oct 1995. IEEE Computer Society, Belling-
ham, N.J.

8. Broggi A, Bertozzi M, Gregoretti F, Passerone F, Sanso C, Reyneri
L (1997) A dedicated image processor exploiting both spatial and
instruction-level parallelism. In: CAMP’97 – Computer Architectures
for Machine Perception, Boston, Oct 1997. IEEE Computer Society,
Bellingham, N.J.

9. Campbell DKG (1996) Towards the classification of algorithmic skele-
tons. Technical Report YCS 276, Department of Computer Science,
University of York, York, UK

10. Canals R (1993) Implantation d’algorithmes de segmentation d’ images
sur la machine parallèle transvision. PhD thesis, Université Blaise
Pascal, Clermont-Ferrand, France

11. Chapuis R (1991) Suivi de primitives image, application la conduite
automatique sur route. PhD thesis, Université Blaise Pascal, Clermont-
Ferrand, France

12. Chapuis R, Potelle A, Brame JL, Chausse F (1995) Real time vehicle
trajectory supervision on the highway. Int J Robotics Res 14(6): 531–
542

13. Cole M (1989) Algorithmic skeletons: structured management of par-
allel computations. Research Monographs in Parallel and Distributed
Computing. Pitman/MIT Press, London

14. Cousineau G, Mauny M (1998) The functional approach to program-
ming. Cambridge University Press. Software and documentation avail-
able from http://pauillac.inria.fr/caml.

15. Danelutto M, DiCosmo R, Leroy X, Pelagatti S (1998) Parallel func-
tional programming with skeletons: the OCamlP3L experiment. In:
Proceedings ACM workshop on ML and its applications. Cornell Uni-
versity

16. Danelutto M, Pasqualetti F, Pelagatti S (1997) Skeletons for data par-
allelism in p3l. In: Lengauer C, Griebl M, Gorlatch S (eds) Proc. of
EURO-PAR ’97, Passau, Germany, vol. 1300 of LNCS, pp. 619–628.
Springer, Berlin Heidelberg New York

17. Darlington J, Field AJ, Harrison PG, Kelly PHJ, Sharp DWN, Wu Q,
While RL (1993) Parallel programming using skeleton functions. In:
Parallel Architectures and Languages Europe. Springer, Berlin Heidel-
berg New York

18. Darlington J, Guo Y, To HW, Wu Q, Yang J, Kohler M (1994) Fortran-
S: A uniform functional interface to parallel imperative languages.
In: Proceedings of the Third Parallel Computing Workshop, Fujitsu
Laboratories Ltd, Kawasaki Japan

19. Darlington J, Guo YK, To HW, Yang J (1995) Functional Skeletons
for Parallel Coordination. In: EuroPar’95 – European Conference on

288 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

Parallel Processing, vol. 966 of Lecture Notes in Computer Science,
pp 55–69, Stockholm, Sweden. Springer, Berlin Heidelberg New York

20. Darlington J, Guo YK, To HW, Jing Y (1995) Skeletons for struc-
tured parallel composition. In: Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming

21. Dickmanns ED, Behringer R, Brudigam C, Thomanek F, Holt V (1993)
An all-transputer visual autobahn-autopilot/copilot. In: 4th ICCV,
Berlin, Germany, pp 608–615

22. Dickmanns ED, Mysliewetz BD (1992) Recursive 3d road and relative
ego-state recognition. Trans Pattern Anal Mach Intell 14(2): 199–213

23. Diebolt F (1996) Road markings recognition. In: International Confer-
ence on Image Processing 96, Lausanne, Switzerland, Sep 1996

24. Ekinci M, Thomas B (1996) Road junction recognition and turn-offs
for autonomous road vehicle navigation. In: International Conference
on Pattern Recognition 96, Vienna, Austria, Aug 1996

25. Ellson J, Gansner E, Koutsofios E, North S. Graphviz. Available in the
World Wide Web at
http://www.research.att.com/sw/tools/graphviz.

26. Hammond K, Michaelson G (eds) (1999) Research Directions in Par-
allel Functional Programming. Springer, London

27. Herman M, Nashman M, Hong TH, Schneiderman H, Coombs D,
Young GS, Raviv D, Wavering AJ (1997) Visual navigation: from bi-
ological systems to unmaned ground vehicles., Chapter 10: Minimalist
vision for navigation, pp 275–316. Aloimonos Y. (ed) Lawrence Erl-
baum Associates, Mahwah, NJ

28. Huang CC, Gillies DF (1995) Determination of an autonomous vehi-
cle position by matching the road curvature. In: Proceedings of SPIE,
Vol. 2591 Mobile Robot X, pp 14–24

29. Legrand P (1995) Schémas de parallélisation d’applications de traite-
ment d’ iamges sur la machine parallèle transvision. PhD thesis,
Université Blaise Pascal, Clermont-Ferrand, France

30. Legrand P, Canals R, Dérutin JP (1993) Edge and region segmentation
processes on the parallel vision machine Transvision. In: Computer
Architecture for Machine Perception, pp 410–420, New-Orleans, La.

31. MCGraw J, Skedzielewski S, Allan S, Oldehoeft R, Glauert J, Kirkham
C, Noyce B, Thomas R (1985) Sisal : Streams and iteration in a single
assignment language. Technical report m-146, Lawrence Livermore
National Laboratory

32. Michaelson GJ, Scaife NR (1995) Prototyping a parallel vision system
in standard ML. J Funct Program 5(3): 345–382

33. Paulson LC (1991) ML for the Working Programmer, second edition,
Cambridge University Press, New York

34. Scaife NR (2000) A dual source parallel architecture for computer
vision. PhD thesis, Heriot-Watt University, Edinburgh

35. Scaife NR, Michaelson GJ, Wallace AM (1997) Four skeletons and
a function. In: Davie T, Clack C, Hammond K (eds) International
Workshop on Implementation of Functional Languages, pp 529–538,
Sep 1997

36. Sérot J (2000) Camlflow: a caml to data-flow translator. In: Gilmore
S (ed) 2nd Scottish Functional Programming Workshop, Jul 2000

37. Skillicorn DB (1995) Foundations of parallel programming. Number 6
in International series on parallel computation. Cambridge University
Press

38. Skillicorn DB, Talia D (1998) Models and languages for parallel com-
putation. ACM Comput Surv 30(2): 123–169

39. Skillicorn SB (1990) Architecture-independent parallel computation.
IEEE Comput 23(12): 38–50

40. Sorel Y (1994) Massively parallel systems with real time constraints.
The “Algorithm Architecture Adequation” Methodology. In: Proc.
Massively Parallel Computing Systems, Ischia Italy

41. Wadge WW, Ashcroft EA (1985) Lucid, the Data Flow Programming
Language. Academic Press, London

Appendix 1

This section gives the declarative semantics (in the form of
CAML definitions) of the DF, TF and ITERMEM skeletons.
These definitions also provide a default sequential semantics.

worker<f> worker<f>
’c

farmer<acc,z>

’a list

...

’a ’b’b’a

Fig. 20. The parametric process network for the DF skeleton

The DF skeleton

Its definition can be written

let df comp acc z xs
= fold_left acc z (map comp xs),

where

– xs is the list of data items to process,
– comp is the function applied to each item,
– acc performs the accumulation of partial results,
– z is initial value of the accumulator.

The fold left higher order function is the CAML
built-in function for iterating a binary operator over a list
of elements. It can be formally defined with the following
equation:

fold left f z [x1, x2, . . . , xn] = (. . . (f (f z x1)x2) . . . xn) .

For example, if add denotes the function computing the
sum of two integers, then

fold_left add 0 [1;2;3] = ((0+1)+2)+3 = 6,

and if mul2 denotes the function multiplying its argument
by 2,

df mul2 add 1 [4;5;6] = ((1+(4*2))+(5*2))+(6*2).

The signature of the DF higher order function is

val df : (’a -> ’b)
(* Type of the compute function *)

-> (’c -> ’b -> ’c)
(* Type of the accumulating function *)

-> ’c
(* Type of the accumulator value *)

-> ’a list
(* Type of the input list *)

-> ’c
(* Type of the result *)

The TF skeleton

Its definition can be written

let rec tf h solve divide accum z xs =
let f x =

if (h x) then accum z (solve x)
else tf n h solve divide accum z (divide x)

in
fold_left accum z (map f xs)

J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons 289

FARMER<acc_fn,init_acc>
xs := read input list on slot 1
idle_workers := list of workers
busy_workers := 0
while (xs not empty) do

x := head(xs)
xs := tail(xs)
if (idle_workers = empty) then

yi := receive result from worker i
send x to worker i
y := <acc_fn>(y, yi)

else
w := head(idle_workers)
idle_workers := tail(idle_workers)
send x to worker w
busy_workers := busy_workers+1

done
for i = 0 to busy_workers-1 do

yi = receive result from worker
y := <acc_fn>(y, yi)
done

send "stop" packet to every worker
write y to output slot 1

WORKER<comp_fn>
running := true
While(running = true) do

x := recv packet from farmer
if x = "stop" then

running := false
else

y := <comp_fn>(x)
send y to farmer

done

Fig. 21. The two parametric process templates used by the DFM skeleton

The construct let v = <defn> in <body> is used
to introduce local definitions in CAML (the f function, ap-
plied to each item of the list, here).

Basically, TF uses the same farming scheme as DF, but
each packet received by a worker is first tested using a pred-
icate h. If it passes the test, the solve function is applied
and the result accumulated to the current result. Otherwise, a
divide function is used to recursively generate new pack-
ets.

The signature of the TF higher order function is

val tf : (’a -> bool)
(* Type of the predicate function *)

-> (’a -> ’c)
(* Type of the solve function *)

-> (’a -> ’a list)
(* Type of the divide function *)

-> (’b -> ’c -> ’b)
(* Type of the accumulating function *)

-> ’b
(* Type of the accumulator value *)

-> ’a
(* Type of the input data *)

-> ’b
(* Type of the result *)

The ITERMEM skeleton

A possible definition in CAML of the ITERMEM skeleton
is

let itermem inp loop out z x =
let rec f z =

let z’, y = loop (z, inp x)
in
out y ; f z’

in
f z

This makes uses of two nested local definitions (one for
the recursive f function, the other for z’ and y, the lat-

ter two denoting the outputs of the central looping function
loop. The explicit notion of iteration34 is encoded using the
CAML sequencing construct: exp1 ; exp2 means “eval-
uate exp1, discards the result, then evaluate exp2 and return
its result” .

The signature of the ITERMEM higher order function is

val itermem : (’a -> ’b)
(* Type of the input function *)

-> (’c * ’b -> ’c * ’d)
(* Type of the central loop function *)
-> (’d -> unit)
(* Type of the output function *)
-> ’c
(* Type of the memory value *)
-> ’a
(* Type of the input data *)
-> unit
(* Type of the result (nothing) *)

Note that the ITERMEM skeleton does not return any-
thing (output is supposed to be handled by its out argument.
This is evidenced by the unit type in CAML.

Appendix 2

We give here the parametric process networks (PPNs) related
to the DF, TF and ITERMEM skeletons

The DF skeleton

The PPN template for the DF skeleton is given in Fig. 20.
The pseudo-code for the two involved PPTs are given in

Fig. 21

34 Iteration is implicit with SCM, DF and TF

290 J. Sérot et al.: Fast prototyping of parallel-vision applications using functional skeletons

mem<z>

’c

inp outloop
’a ’b ’d

’c

Fig. 22. The parametric process network for the ITERMEM skeleton

MEM<init>
mem := <init>
While(true) do

write mem to output slot i
mem := read input on slot 1
done

Fig. 23. The parametric process template used by the ITERMEM skeleton

The TF skeleton

The PPN and PPTs for the TF skeleton are similar to that
of the DF skeleton. The main differences come from con-
ditional execution (implying dynamic thread scheduling) of
the solve function on the workers and of the divide and
accum functions on the farmer. For this reason, it will not
be reproduced here.

The ITERMEM skeleton

The PPN of the ITERMEM skeleton closely follows its rep-
resentation given in Fig. 22.

This only involves one PPT, the one of the mem node
(Fig. 23). It memorizes the result of the n − 1st iteration to
make it available at iteration n.

Appendix 3

We give here, just for information purposes, the definition
of the map and fold left “standard” higher order func-
tions in CAML. These definitions are used within SKIPPER
to give a default sequential semantics to the DF and TF
skeletons. Let us recall that understanding these definitions
is not required of the application programmer, insofar as the
declarative semantics of the skeletons can be defined with
the ” formal” definitions of map and fold left given in
the text.

let rec map f xs = match xs with
[] -> []

| x :: xs -> f x :: map f xs

let rec fold_left f z xs = match xs with
[] -> z

| x :: xs -> fold_left f (f z x) xs

Jocelyn Sérot graduated from IRESTE,
Nantes in 1989 and received the PhD degree
from the University of Paris-Sud in 1993. He
was appointed Assistant Professor at Blaise
Pascal University, Clermont-Ferrand, France
in 1994 and joined the computer vision group
of the LASMEA (Laboratoire des Sciences et
Materiaux pour l’Electronique, et d’Automa-
tique) CNRS laboratory. His major research
interests are in functional programming, par-
allel architectures, and computer vision.

Dominique Ginhac received his PhD from the
Blaise Pascal University, Clermont-Ferrand,
France. Since 2000, he has been Assistant
Professor at University of Burgundy, Dijon,
France. His research interests include parallel
image processing and development of software
dedicated to the fast prototyping of vision al-
gorithms on MIMD/DM platforms.

Roland Chapuis obtained his PhD in 1991
from Blaise Pascal University (Clermont-
Ferrand, France). He is now assistant-
Professor in Electrical Engineering at
Blaise Pascal University and Researcher
at LASMEA. He is working on real-time
pattern recognition applied to outdoor en-
vironments. since 1988, he has been work-
ing in vision-based road-following algo-
rithms in collaboration with PSA Peugeot-
Citroën.

Jean Pierre Dérutin is a professor of
micro-electronic design at the Engineer
school CUST-Université Blaise Pascal and
he is doing his research activities in the
LASMEA-UMR 6602 CNRS at the same
university. His main research interests are
in the field of dedicated parallel machines
for image processing, especially with a
MIMD-DM approach. The experimental
domains focus on applications with hard
constraints in terms of real time, volume,
and electric power like intelligent vehi-
cles. Current interests are fast prototyping
of vision applications on dedicated paral-

lel systems of image processing and new architectures of dedicated MIMD-
DM machines for image processing.

