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I. INTRODUCTION

For almost 100 years, nonlinear science has attracted the attention of AQ1
researchers to circumvent the limitation of linear theories in the expla-
nation of natural phenomenons. Indeed, nonlinear differential equations
can model the behavior of ocean surfaces (Scott, 1999), the recurrence
of ice ages (Benzi et al., 1982), the transport mechanisms in living cells

* Laboratoire LE2I UMR 5158, Aile des sciences de l’ingénieur, BP 47870 21078 Dijon, Cedex, France

Advances in Imaging and Electron Physics,Volume 152, ISSN 1076-5670, DOI: 10.1016/S1076-5670(08)00603-4.
Copyright © 2008 Elsevier Inc. All rights reserved.

79



CH03-P374219 [13:52 2008/5/5] HAWKES: Advances in Imaging and Electron Physics Page: 80 79–153

80 Saverio Morfu et al.

(Murray, 1989), the information transmission in neural networks
(Izhikevich, 2007; Nagumo et al., 1962; Scott, 1999), the blood pressure
propagation in arteries (Paquerot and Remoissenet, 1994), or the excitabil-
ity of cardiac tissues (Beeler and Reuter, 1977; Keener, 1987). Therefore,
nonlinear science appears as the most important frontier for a better
understanding of nature (Remoissenet, 1999).

In the recent field of engineering science (Agrawal1, 2002; Zakharov and
Wabnitz, 1998), considering nonlinearity has allowed spectacular progress
in terms of transmission capacities in optical fibers via the concept of soli-
ton (Remoissenet, 1999). More recently, nonlinear differential equations
in many areas of physics, biology, chemistry, and ecology have inspired
unconventional methods of processing that transcend the limitations of
classical linear methods (Teuscher and Adamatzky, 2005). This growing
interest for processing applications based on the properties of nonlinear
systems can be explained by the observation that fundamental progress
in several fields of computer science sometimes seems to stagnate. Novel
ideas derived from interdisciplinary fields often open new directions of
research with unsuspected applications (Teuscher and Adamatzky, 2005).

On the other hand, complex processing tasks require intelligent sys-
tems capable of adapting and learning by mimicking the behavior of
the human brain. Biologically inspired systems, most often described by
nonlinear reaction-diffusion equations, have been proposed as convenient
solutions to very complicated problems unaccessible to modern von Neu-
mann computers. It was in this context that the concept of the cellular
neural network (CNN) was introduced by Chua and Yang as a novel class of
information-processing systems with potential applications in areas such
as image processing and pattern recognition (Chua and Yang, 1988a, b). In
fact, CNN is used in the context of brain science or the context of emer-
gence and complexity (Chua, 1998). Since the pioneer work of Chua, the
CNN paradigm has rapidly evolved to cover a wide range of applica-
tions drawn from numerous disciplines, including artificial life, biology,
chemistry, physics, information science, nonconventional methods of com-
puting (Holden et al., 1991), video coding (Arena et al., 2003; Venetianer
et al., 1995), quality control by visual inspection (Occhipinti et al., 2001),
cryptography (Caponetto et al., 2003; Yu and Cao, 2006), signal-image pro-
cessing (Julian and Dogaru, 2002), and so on (see Tetzlaff (2002), for an
overview of the applications).

In summary, the past two decades devoted to the study of CNNs
have led scientists to solve problems of artificial intelligence by com-
bining the highly parallel multiprocessor architecture of CNNs with the
properties inherited from the nonlinear bio-inspired systems. Among the
tasks of high computational complexity routinely performed with non-
linear systems are the optimal path in a two-dimensional (2D) vector
field (Agladze et al., 1997), image skeletonization (Chua, 1998), finding
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the shortest path in a labyrinth (Chua, 1998; Rambidi and Yakovenchuk,
2001), or controlling mobile robots (Adamatzky et al., 2004). However, the
efficiency of these nonlinear systems for signal-image processing or pat-
tern recognition does not come only from their biological background.
Indeed, the nonlinearity offers an additional dimension lying in the signal
amplitude, which gives rise to novel properties not shared by linear sys-
tems. Noise removal with a nonlinear dissipative lattice (Comte et al., 1998;
Marquié et al., 1998), contrast enhancement based on nonlinear oscillators
properties (Morfu and Comte, 2004), edge detection exploiting vibration
noise (Hongler et al., 2003), optimization by noise of nonoptimum problems
or signal detection aided by noise via the stochastic resonance phenomenon
(Chapeau-Blondeau, 2000; Comte and Morfu, 2003; Gammaitoni et al.,
1998) constitute a nonrestrictive list of examples in which the properties
of nonlinear systems have allowed overcoming the limitations of classical
linear approaches.

Owing to the rich variety of potential applications inspired by nonlin-
ear systems, the efforts of researchers have focused on the experimental
realization of such efficient information-processing devices. Two different
strategies were introduced (Chua and Yang, 1988a; Kuhnert, 1986), and
today, the fascinating challenge of artificial intelligence implementation
with CNN is still being investigated.

The first technique dates from the late 1980s with the works of
Kuhnert, who proposed taking advantage of the properties of Belousov–
Zhabotinsky-type media for image-processing purposes (Kuhnert, 1986;
Kuhnert et al., 1989). The primary concept is that each micro-volume
of the active photosensitive chemical medium acts as a one-bit proces-
sor corresponding to the reduced/oxidized state of the catalyst (Agladze
et al., 1997). This feature of chemical photosensitive nonlinear media
has allowed implementation of numerous tools for image processing.
Edge enhancement, classical operations of mathematical morphology, the
restoration of individual components of an image with overlapped com-
ponents (Rambidi et al., 2002), the image skeletonization (Adamatzky
et al., 2002), the detection of urban roads, or the analysis of medical images
(Teuscher and Adamatzky, 2005) represent a brief overview of processing
tasks computed by chemical nonlinear media. However, even consider-
ing the large number of chemical “processors,” the very low velocity of
trigger waves in chemical media is sometimes incompatible with real-time
processing constraints imposed by practical applications (Agladze et al.,
1997). Nevertheless, the limitations of these unconventional methods of
computing in no way dismiss the efficiency and high prospects of the pro-
cessing developed with active chemical media (Adamatzky and de Lacy
Costello, 2003).

By contrast, analog circuits do not share the weakness of the previous
strategy of integration. Therefore, because of their real-time processing
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capability, electronic hardware devices constitute the most common way
to implement CNNs (Chua and Yang, 1988a). The first step to electroni-
cally develop a CNN for image-processing purposes consists of designing
an elementary cell. More precisely, this basic unit of CNNs usually con-
tains linear capacitors, linear resistors, and linear and nonlinear controlled
sources (Chua and Yang, 1988b; Comte and Marquié, 2003). Next, to
complete the description of the network, a coupling law between cells
is introduced. Owing to the propagation mechanism inherited from the
continuous-time dynamics of the network, the cells do not only inter-
act with their nearest neighbors but also with cells that are not directly
connected. Among the applications that can be electronically realized
are character recognition (Chua and Yang, 1988), edge filtering (Chen
et al., 2006; Comte et al., 2001), noise filtering (Comte et al., 1998; Julián
and Dogaru, 2002; Marquié et al., 1998), contrast enhancement, and gray-
level extraction with a nonlinear oscillators network (Morfu, 2005; Morfu
et al., 2007).

The principle of CNN integration with discrete electronic components
is closely related to the development of nonlinear electrical transmission
lines (NLTLs) (Remoissenet, 1999). Indeed, under certain conditions (Chua,
1998), the parallel processing of information can be ruled by nonlinear
differential equations that also describe the evolution of the voltage at
the nodes of an electrical lattice. It is then clear that considering a one-
dimensional (1D) lattice allows signal filtering, while extending the concept
to a 2D network can provide image processing applications.

The development of NLTLs was motivated mainly by the fact that
these systems are quite simple and relatively that inexpensive experimen-
tal devices allow quantitative study of the properties of nonlinear waves
(Scott, 1970). In particular, since the pioneering works by Hirota and Suzuki
(1970) and Nagashima and Amagishi (1978) on electrical lines simulating
the Toda lattice (Toda, 1967), these NLTLs, which can be considered as
analog simulators, provide a useful way to determine the behavior of exci-
tations inside the nonlinear medium (Jäger, 1985; Kuusela, 1995; Marquié
et al., 1995; Yamgoué et al., 2007).

This chapter is devoted primarily to the presentation of a few particular
nonlinear processing tools and discusses their electronic implementation
with discrete components.

After a brief mechanical description of nonlinear systems, we present a
review of the properties of both purely inertial systems and overdamped
systems. The following sections show how taking advantage of these pro-
perties allows the development of unconventional processing methods.
Especially considering the features of purely inertial systems, we show how
it is possible to perform various image-processing tasks, such as contrast
enhancement of a weakly contrasted picture, extraction of gray levels, or
encryption of an image. The electronic sketch of the elementary cell of this
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inertial CNN is proposed, and the nonlinear properties that allows the
previous image processing tasks are experimentally investigated.

The third part of this chapter is devoted exclusively to the filtering appli-
cations inspired by reaction-diffusion media—for example, noise filtering,
edge detection, or extraction of interest regions in a weakly noisy con-
trasted picture. In each case, the elementary cell of the electronic CNN is
developed and we experimentally investigate its behavior in the specific
context of signal-image processing. We conclude by discussing the possi-
ble microelectronic implementations of the previous nonlinear systems. In
addition, the last section contains some perspectives for future develop-
ments inspired by recent properties of nonlinear systems. In particular, we
present a paradoxical nonlinear effect known as stochastic resonance (Benzi
et al., 1982; Chapeau-Blondeau, 1999; Gammaitoni et al., 1998), which is
purported to have potential applications in visual perception (Simonotto AQ:2
et al., 1997).

We trust that the multiple topics in this contribution will assist readers
in better understanding the potential applications based on the properties
of nonlinear systems. Moreover, the various electronic realizations pre-
sented constitute a serious background for future experiments and studies
devoted to nonlinear phenomena. As it is written for an interdisciplinary
readership of physicist and engineers, it is our hope that this chapter will
encourage readers to perform their own experiments.

II. MECHANICAL ANALOGY

In order to understand the image-processing tools inspired by the pro-
perties of nonlinear systems, we present a mechanical analogy of these
nonlinear systems. From a mechanical point of view, we consider a chain
of particles of mass M submitted to a nonlinear force f deriving from a
potential � and coupled with springs of strength D. If Wn represents the
displacement of the particle n, the fundamental principle of the mechanics
is written as

M
d2Wn

dt2 + λ
dWn

dt
= − d�

dWn
+ Rn, (1)

where M
d2W
dt2 represents the inertia term andλ

dW
dt

corresponds to a friction

force. Furthermore, the resulting elastic force Rn applied to the nth particle
by its neighbors can be defined by:

Rn = D
∑

j∈Nr

(
Wj − Wn

)
, (2)
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where Nr is the neighborhood, namely, Nr = {n − 1, n + 1} in the case of
a 1D chain.

We propose to investigate separately the purely inertial case, that is

M
d2W
dt2 >> λ

dW
dt

, and the overdamped one deduced when M
d2W
dt2 <<

λ
dW
dt

.

A. Overdamped Case

In this section, an overdamped system is presented by neglecting the inertia
term of Eq. (1) compared to the friction force. We specifically consider
λ = 1 and the case of a cubic nonlinear force

f (W) = −W(W − α)(W − 1), (3)

deriving from the double-well potential �(W) = − ∫ W
0 f (u)du as repre-

sented in Figure 1 for different values of α. The roots of the nonlinear
force 0 and 1 correspond to the positions of the local minima of the poten-
tial, namely, the well bottoms, whereas the root α represents the position of
the potential maximum. The nonlinearity threshold α defines the potential
barrier� between the potential minimum with the highest energy and the
potential maximum. To explain the propagation mechanism in this chain,
it is convenient to define the excited state by the position of the potential
minimum with the highest energy, and the rest state by the position corre-
sponding to the minimum of the potential energy. As shown in Figure 1a,
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FIGURE 1 Double-well potential deduced from the nonlinear force (3). (a) For
α < 1/2 the well bottom with highest energy is located at W = 0, the potential
barrier is given by � = ∫ α

0 f (u)du = φ(α)− φ(0). (b) For α > 1/2 the symmetry of
the potential is reversed: W = 1 becomes the position of the well bottom of highest
energy, and the potential barrier is � = ∫ α

1 f (u)du = φ(α)− φ(1).
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the excited state is 0 and the rest state is 1 when the nonlinearity threshold
α < 1/2. In the case α > 1/2, since the potential symmetry is reversed, the
excited state becomes 1 and the rest state is 0 (Figure 1b). The equation that
rules this overdamped nonlinear systems can be deduced from Eq. (1).
Indeed, when the second derivative versus time is neglected compared to
the first derivative and whenλ = 1, Eq. (1) reduces to the discrete version of
Fisher’s equation, introduced in the 1930s as a model for genetic diffusion
(Fisher, 1937):

dWn

dt
= D(Wn+1 + Wn−1 − 2Wn)+ f (Wn). (4)

1. Uncoupled Case

We first investigate the uncoupled case, that is, D = 0 in Eq. (4), to deter-
mine the bistability of the system. The behavior of a single particle of
displacement W and initial position W0 obeys

dW
dt

= −W(W − α)(W − 1). (5)

The zeros of the nonlinear force f , W = 1 and W = 0 correspond to stable
steady states, whereas the state W = α is unstable. The stability analy-
sis can be realized by solving Eq. (5) substituting the nonlinear force
f = −W(W − α)(W − 1) for its linearized expression near the considered AQ:3
steady states W∗ ∈ {0, 1,α}. If fW(W∗) denotes the derivative versus W of
the nonlinear force for W = W∗, we are led to solve:

dW
dt

= fW(W∗)(W − W∗)+ f (W∗). (6)

The solution of Eq. (6) can then be easily expressed as

W(t) = W∗ + Ce fW (W∗)t − f (W∗)
fW(W∗)

(7)

where C is a constant depending on the initial condition—the initial
position of the particle. The solution in Eq. (7), obtained with a linear
approximation of the nonlinear force f , shows that the stability is set by
the sign of the argument of the exponential function.

Indeed, for W∗ = 0 and W∗ = 1, the sign of fW(W∗) is negative, involv-
ing that W(t �→ ∞) tends to a constant. Therefore, the two points W∗ = 0
and W∗ = 1 are stable steady states. Conversely, for W∗ = α, fW(W∗) is
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positive, inducing a divergence for W(t �→ ∞). W∗ = α is an unstable
steady state.

We now focus our attention on the particular case α = 1/2 since it will
allow interesting applications in signal and image processing.

This case is intensively developed in Appendix A, where it is shown
that the displacement of a particle with initial position W0 can be
expressed by

W(t) = 1
2

⎛

⎜⎝1 + W0 − 1
2√

(W0 − 1
2 )

2 − W0(W0 − 1)e− 1
2 t

⎞

⎟⎠. (8)

This theoretical expression is compared in Figure 2 to the numerical
results obtained solving Eq. (5) using a fourth-order Runge–Kutta algo-
rithm with integrating time step dt = 10−3. As shown in Figure 2, when
the initial condition W0 is below the unstable state α = 1/2, the particle
evolves toward the steady state 0. Otherwise, if the initial condition W0

exceeds the unstable state α = 1/2, the particle evolves toward the other
steady state 1. Therefore, the unstable states α = 1/2 acts as a threshold
and the system exhibits a bistable behavior.
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FIGURE 2 Bistable behavior of the overdamped system in the case α = 1/2. Left:
Evolution of a particle for different initial conditions in the range [0; 1]. The solid line
is plotted with the analytical expression in Eq. (8), whereas the (o) signs correspond to
the numerical solution of Eq. (5) for different initial conditions W0 ∈ [0; 1]. The
potential φ obtained by integrating the nonlinear force (3) is represented at the right
as a reference.
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2. Coupled Case

We now consider the coupled case (D �= 0). In such systems ruled by
Eq. (4), the balance between the dissipation and the nonlinearity gives
rise to the propagation of a kink (a localized wave) called a diffusive soli-
ton that propagates with constant velocity and profile (Remoissenet, 1999).
To understand the propagation mechanism, we first consider the weak
coupling limit and the case α < 1/2. The case of strong coupling, which
corresponds to a continuous medium, is discussed later since it allows
theoretical characterization of the waves propagating in the medium.

a. Weak Coupling Limit. As shown in Figure 3a, initially all particles of
the chain are located at the position 0—the excited state. To initiate a kink,
an external forcing allows the first particle to cross the potential barrier
in W = α and to fall in the right well, at the rest state defined by the
position W = 1. Thanks to the spring coupling the first particle to the
second one, but despite the second spring, the second particle attempts

to cross the potential barrier with height �(α) = −α
4

12
+ α3

6
(Morfu, 2003)

(see Figure 3b).
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FIGURE 3 Propagation mechanism. (a) Initially all particles of the chain are in the
excited state 0, that is, at the bottom of the well with highest energy. (b) State of the
chain for t > 0. The first particle has crossed the potential barrier � and attempts to
pull the second particle down in its fall.
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According to the value of the resulting force applied to the second
particle by the two springs compared to the nonlinear force f between
[0, α [, two behaviors may occur:

1. If the resulting elastic force is sufficiently important to allow the second
particle to cross the potential barrier �(α), then this particle falls in
the right well and pulls the next particle down in its fall. Since each
particle of the chain successively undergoes a transition from the excited
state 0 to the rest state 1, a kink propagates in the medium. Moreover,
its velocity increases versus the coupling and as the barrier decreases
(namely, as α decreases).

2. Otherwise, if the resulting force does not exceed a critical value (i.e., if
D < D∗(α)), the second particle cannot cross the potential barrier and
thus stays pinned at a position w in [0; α[: it is the well-known propaga-
tion failure effect (Comte et al., 2001; Erneux and Nicolis, 1993; Keener,
1987; Kladko et al., 2000).

The mechanical model associated with Eq. (4) shows that in the weak
coupling limit the characteristics of the nonlinear system are ruled by the
coupling D and the nonlinear threshold α. Moreover, the propagation of a
kink is due to the transition from the excited state to the rest state and is
only possible when the coupling D exceeds a critical value D∗(α).

b. Limit of Continuous Media. The velocity of the kink and its profile can be
theoretically obtained in the limit of continuous media—when the coupling
D is large enough compared to the nonlinear strength.

Then, in the continuous limit, the discrete Laplacian of Eq. (4) can be
replaced by a second derivative versus the space variable z:

∂W
∂t

= D
∂2W
∂z2 + f (W). (9)

This equation, introduced by Nagumo in the 1940s as an elementary
representation of the conduction along an active nerve fiber, has an impor-
tant meaning in understanding transport mechanism in biological systems
(Murray, 1989; Nagumo et al., 1962).

Unlike the discrete Equation (4), the continuous Equation (9) admits
propagative kink solution only if

∫ 1
0 f (u)du �= 0, which reduces to α �= 1/2

in the case of the cubic force (3) (Scott, 1999).
Introducing the propagative variable ξ = z − ct, these kinks and anti-

kinks have the form (Fife, 1979; Henry, 1981)

W(ξ) = 1
2

[
1 ± tanh

(
1

2
√

2D
(ξ − ξ0)

)]
, (10)
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where ξ0 is the initial position of the kink for t = 0 and where the kink
velocity is defined by c = ±√

D/2(1 − 2α).
When α < 1/2, the excited state is 0, and the rest state is 1. Therefore, the

rest state 1 spreads in the chain, which set the sign of the velocity according
to the profile of the kink initiated in the nonlinear system:

1. If the profile is given by W(ξ) = 1
2

[
1 − tanh

(
1

2
√

2D
(ξ − ξ0)

)]
, a kink

propagates from left to right with a positive velocity c = √
D/2(1 − 2α)

(Figure 4a, left).

2. Otherwise, if the profile is set by W(ξ) = 1
2

[
1 + tanh

(
1

2
√

2D
(ξ − ξ0)

)]
,

a kink propagates from right to left with a negative velocity c =
−√

D/2(1 − 2α) (Figure 4a, right).

When α > 1/2, since the symmetry of the potential is reversed, the
excited state becomes 1 and the rest state is 0. The propagation is then due
to a transition between 1 and 0, which provides the following behavior:

1. If W(ξ) = 1
2

[
1 − tanh

(
1

2
√

2D
(ξ − ξ0)

)]
, a kink propagates from right to

left with a negative velocity c = √
D/2(1 − 2α) (Figure 4b, left).
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FIGURE 4 Propagative solution of the continuous Nagumo Equation (9) with D = 1.
Spatial representation of the kink for t = 0 in dotted line and for t = 20 in solid line.
The arrow indicates the propagation direction, the corresponding potential is
represented at the right end to provide a reference. (a) α = 0.3, (b) α = 0.7.
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2. Else if W(ξ) = 1
2

[
1 + tanh

(
1

2
√

2D
(ξ − ξ0)

)]
, a kink propagates from left

to right with a positive velocity c = −√
D/2(1 − 2α) (Figure 4b, right).

B. Inertial Systems

In this section, we neglect the dissipative term of Eq. (1) compared to the
inertia term and we restrict our study to the uncoupled case. Moreover, in
image-processing context, it is convenient to introduce a nonlinear force f
under the form

f (W) = −ω2
0(W − m)(W − m − α)(W − m + α), (11)

where, m and α < m are two parameters that allow adjusting the width
and height � = ω2

0α
4/4 of the potential � (Figure 5):

�(W) = −
∫ W

0
f (u)du. (12)

The nonlinear differential equation that rules the uncoupled chain can
be deduced by inserting the nonlinear force (11) into Eq. (1) with D = 0.
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Neglecting the dissipative term, the particles of unitary mass are then ruled
by the following nonlinear oscillator equations:

d2Wi

dt2 = f (Wi). (13)

1. Theoretical Analysis

We propose here to determine analytically the dynamics of the nonlinear
oscillators obeying Eq. (13) (Morfu and Comte, 2004; Morfu et al., 2006).
Setting xi = Wi − m, Eq. (13) can be rewritten as

d2xi

dt2 = −ω2
0xi(xi − α)(xi + α). (14)

Noting x0
i the initial position of the particle i and considering that all the

particles initially have a null velocity, the solutions of Eq. (14) can be
expressed with the Jacobian elliptic functions as

xi(t) = x0
i cn(ωit, ki), (15)

where ωi and 0 ≤ ki ≤ 1 represent, respectively, the pulsation and the
modulus of the cn function (see recall on the properties of Jacobian elliptic
function in Appendix B).

Deriving Eq. (15) twice and using the properties in Eq. (B3), yields

dxi

dt
= −x0

i ωisn(ωit, ki)dn(ωit, ki),

d2xi

dt2 = −x0
i ω

2
i cn(ωit, ki)

[
dn2(ωit, ki)− kisn2(ωit, ki)

]
. (16)

Using the identities in Eq. (B4) and (B5), Eq. (16) can be rewritten as

d2xi

dt2 = −2kiω
2
i

x02

i

x
[

x2 − 2ki − 1
2ki

x02

i

]
. (17)

Identifying this last expression with Eq. (14), we derive the pulsation of
the Jacobian elliptic function

ωi = ω0

√
x02

i − α2, (18)
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and its modulus

ki = 1
2

x02

i

x02

i − α2
. (19)

Finally, introducing the initial condition W0
i = x0

i + m, the solution of
Eq. (13) can be straightforwardly deduced from Eqs. (15), (18), and (19):

Wi(t) = m + (
W0

i − m
)
cn(ωit, ki), (20)

with

ωi
(
W0

i
) = ω0

√(
W0

i − m
)2 − α2 and ki

(
W0

i
) = 1

2

(
W0

i − m
)2

(
W0

i − m
)2 − α2

.

(21)

Both the modulus and the pulsation are driven by the initial condition
W0

i . Moreover, the constraints to ensure the existence of the pulsation

ωi and of the modulus, respectively, are written as
(
W0

i − m
)2 − α2 ≥ 0

and 0 ≤ ki ≤ 1. These two conditions restrict the range of the allowed ini-

tial conditions W0
i to

]
−∞; m − α

√
2

] ⋃ [
m + α

√
2; +∞

[
, as shown in

Figure 6, where the pulsation and the modulus are represented versus the
initial condition W0

i . Note that this allowed range of initial conditions cor-
responds also to a particle with an initial potential energy exceeding the
barrier � between the potential extrema (see Figure 5).

2. Nonlinear Oscillator Properties

To illustrate the properties of nonlinear oscillators, we consider a chain of
length N = 2 particles with a weak difference of initial conditions and with
a null initial velocity. The dynamics of these two oscillators are ruled by
Eq. (20), where the pulsation and modulus of both oscillators are driven by
their respective initial condition. Moreover, we have restricted our study
to the case of the following nonlinearity parameters m = 2.58, α = 1.02,
ω0 = 104. We have applied the initial condition W0

1 = 0 to the first oscillator,
while the initial condition of the second oscillator is set to W0

2 = 0.2, which
corresponds to the situation of Figure 5.

Figure 7a shows that the oscillations of both particles take place in the
range [W0

i ; 2m − W0
i ] as predicted by Eq. (20) [that is, [0; 5.16] for the

first oscillator and [0; 4.96] for the second one]. Moreover, owing to their
difference of initial amplitude and to the nonlinear behavior of the sys-
tem, the two oscillators quickly attain a phase opposition for the first
time at t = topt = 1.64 × 10−3. This phase opposition corresponds to the
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situation where the first oscillator has reached its minimum W1(topt) = 0,
whereas the second oscillator has attained its maximum W2(topt) = 4.96.
As shown in Figure 7b, the displacement difference δ(t) = W2(t)− W1(t)
is then maximum for t = topt and becomes δ(topt) = 4.96. For this optimal
time, a “contrast enhancement” of the weak difference of initial conditions
is realized, since initially the displacement difference was δ(t = 0) = 0.2.
Note that in Figure 7b, the displacement difference between the two
oscillators also presents a periodic behavior with local minima and local
maxima. In particular, the difference δ(t) is null for t = 3.96 × 10−5, t =
1.81 × 10−4, t = 3.5 × 10−4, t = 5.21 × 10−4; minimum for t = 1.4 × 10−4,
t = 4.64 × 10−4, t = 1.47 × 10−3 and maximum for t = 3 × 10−4, t = 6.29 ×
10−4, t = 1.64 × 10−3. These characteristic times will be of crucial interest
in image-processing context to define the filtered tasks performed by the
nonlinear oscillators network.

Figure 6a reveals that the maximum variation of the pulsation com-
pared to the amplitude W0

i , that is, �ω/ω0, is reached for W0
i = m − α

√
2,

that is, for a particle with an initial potential energy near the barrier �.
Therefore, to quickly realize a great amplitude contrast between the two
oscillators, it could be interesting to launch them with an initial amplitude
near m − α

√
2, or to increase the potential barrier height �. We chose to

investigate this latter solution by tuning the parameter of the nonlinear-
ity α, when the initial amplitude of both oscillators remains W0

1 = 0 and
W0

2 = 0.2. The results are reported in Figure 8, where we present the
evolution of the difference δ(t) for different values of α.

As expected, when the nonlinearity parameter α increases, the optimal
time is significantly reduced. However, when α is adjusted near the critical
value (m − W0

2 )/
√

2 as in Figure 8d, the optimum reached by the difference
δ(t) is reduced to 4.517 for α = 1.63 instead of 4.96 for α = 1.02. Even if it
is not the best contrast enhancement that can be performed by the sys-
tem, the weak difference of initial conditions between the two oscillators
is nevertheless strongly enhanced for α = 1.63.

To highlight the efficiency of nonlinear systems, let us consider the case
of a linear force f (W) = −ω0W in Eq. (13).

In the linear case, the displacement difference δ(t) between two har-
monic oscillators can be straightforwardly expressed as

δ(t) = ε cos(ω0t), (22)

where ε represents the slight difference of initial conditions between the
oscillators. This last expression shows that it is impossible to increase
the weak difference of initial conditions since the difference δ(t) always
remains in the range [−ε; ε]. Therefore, nonlinearity is a convenient solu-
tion to overcome the limitation of a linear system and to enhance a weak
amplitude contrast.
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FIGURE 8 Influence of the nonlinearity parameter α on the displacement difference
δ between the two oscillators of respective initial conditions 0 and 0.2. Parameters
m = 2.58 and ω0 = 1. (a): (topt = 1.75 × 10−3;α = 0.4). (b): (topt = 1.66 × 10−3;
α = 1.05). (c): (topt = 1.25 × 10−3;α = 1.5). (d): (topt = 0.95 × 10−3;α = 1.63).

III. INERTIAL SYSTEMS

This section presents different image-processing tasks inspired by the
properties of the nonlinear oscillators presented in Section II.B. Their
electronic implementation is also discussed.

A. Image Processing

By analogy with a particle experiencing a double-well potential, the pixel
number (i, j) is analog to a particle (oscillator) whose initial position
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corresponds to the initial gray level W0
i, j of this pixel. Therefore, if N × M

denotes the image size, we are led to consider a 2D network, or CNN,
consisting of uncoupled nonlinear oscillators. The node i, j of this CNN
relates to

d2Wi, j

dt2 = −ω2
0(Wi, j − m − α)(Wi, j − m + α)(Wi, j − m), (23)

with i = 1, 2 . . .N and j = 1, 2 . . , M.
Note that we take into account the range of oscillations [0; 2m − W0

i, j]
predicted in Section II.B.2 to define the gray scale of the images, namely,
0 for the black level and 2m = 5.16 for the white level.

The image to be processed is first loaded as the initial condition at the
nodes of the CNN. Next, the filtered image for a processing time t can be
deduced noting the position reached by all oscillators of the network at this
specific time t. More precisely, the state of the network at a processing time
t is obtained by solving numerically Eq. (23) with a fourth-order Runge–
Kutta algorithm with integrating time step dt = 10−6.

1. Contrast Enhancement and Image Inversion

The image to process with the nonlinear oscillator network is the weak
contrasted image of Figure 9a. Its histogram is restricted to the range
[0; 0.2], which means that the maximum gray level of the image (0.2) is the
initial condition of at least one oscillator of the network, while the mini-
mum gray level of the image (0) is also the initial condition of at least
one oscillator. Therefore, the pixels with initial gray level 0 and 0.2 oscil-
late with the phase difference δ(t) predicted by Figure 7b. In particular, as
explained in Section II.B.2, their phase difference δ(t) can be null for the
processing times t = 3.96 × 10−4, 1.81 × 10−4, 3.5 × 10−4, and 5.21 × 10−4;
minimum for t = 1.4 × 10−4, 4.64 × 10−4, and 1.47 × 10−3 and maximum
for t = 3 × 10−4, 6.29 × 10−3, and 1.64 × 10−3. As shown in Figure 9b, 9d,
9f, and 9h, the image goes through local minima of contrast at the process-
ing times corresponding to the zeros of δ(t). Furthermore, the processing
times providing the local minima of δ(t) realize an image inversion with
a growing contrast enhancement (Figure 9c, 9g, and 9j). Indeed, since the
minima of δ(t) are negative, for these processing times the minimum of the
initial image becomes the maximum of the filtered image and vice versa.
Finally, the local maxima of δ(t) achieve local maxima of contrast for the
corresponding processing times (Figure 9e, 9i, and 9k). Note that the best
enhancement of contrast is attained at the processing time topt for which δ(t)
is maximum. The histogram of each filtered image in Figure 9 also reveals
the temporal dynamic of the network. Indeed, the width of the image his-
togram is periodically increased and decreased, which indicates that the
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contrast of the corresponding filtered image is periodically enhanced or
reduced.

Another interesting feature of the realized contrast is determined by
the plot of the network response at the processing time topt (Morfu, 2005).
This curve also represents the gray level of the pixels of the filtered image
versus their initial gray level. Therefore, the horizontal axis corresponds to
the initial gray scale, namely, [0; 0.2], whereas the vertical axis represents
the gray scale of the processed image. Such curves are plotted in Figure 10
for different values of the nonlinearity parameter α, and at the optimal time
defined by the maximum of δ(t). In fact, these times were established in
Section II.B.2 in Figure 8.

Moreover, to compare the nonlinear contrast enhancement to a uniform
one, we have superimposed (dotted line) the curve resulting from a simple
multiplication of the initial gray scale by a scale factor. In Figure 10a, since
the response of the system for the lowest value of α is most often above the
dotted line, the filtered image at the processing time topt = 1.75 × 10−3 for
α = 0.4 will be brighter than the image obtained with a simple rescaling.
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FIGURE 10 Response of the nonlinear system for different nonlinearity parameters α
at the corresponding optimal time topt (solid line) compared to a uniform rescaling
(dotted line). The curves are obtained with Eqs. (20) and (21) setting the time to
the optimum value defined by the maximum of δ(t) (see Figure 8). In addition, we
let the initial conditions W0

i vary in the range [0; 0.2] in Eqs. (20) and (21). (a): (topt =
1.75 × 10−3;α = 0.4). (b): (topt = 1.66 × 10−3;α = 1.05). (c): (topt = 1.25 × 10−3;
α = 1.5). (d): (topt = 0.95 × 10−3;α = 1.63), ω0 = 1.
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As shown in Figure 10b, increasing the nonlinearity parameter α to 1.05
involves an optimum time 1.66 × 10−3 and symmetrically enhances the
light and dark gray levels. When the nonlinearity parameter is adjusted
to provide the greatest potential barrier (Figure 10c and 10d), the contrast
of the medium gray level is unchanged compared to a simple rescaling.
Moreover, the dark and light grays are strongly enhanced with a greater
distortion when the potential barrier is maximum, that is, for the greatest
value of α (Figure 10d).

2. Gray-Level Extraction

Considering processing times exceeding the optimal time topt, we propose
to perform a gray-level extraction of the continuous gray scale represented
in Figure 11a (Morfu, 2005). For the sake of clarity, it is convenient to
redefine the white level by 0.2, whereas the black level remains 0.

For the nine specific times presented in Figure 11, the response of the
system displays a minimum that is successively reached for each level
of the initial gray scale. Therefore, with time acting as a discriminating
parameter, an appropriate threshold filtering allow extraction of all pixels
with a gray level in a given range. Indeed, in Figure 11, the simplest case of
a constant threshold Vth = 0.25 provides nine ranges of gray at nine closely
different processing times, which constitutes a gray-level extraction.

Moreover, owing to the response of the system, the width of the extracted
gray-level ranges is reduced in the light gray. Indeed, the range extracted
in the dark gray for the processing time t = 3.33 × 10−3 (Figure 11c) is
approximatively twice greater than the range extracted in the light gray
for t = 3.51 × 10−3 (Figure 11i). To perform a perfect gray-level extraction,
the threshold must match with a slight offset the temporal evolution of the
minimum attained by the response of the system. Under these conditions,
the width of the extracted gray range is set by the value of this offset.

Note that the response of the system after the optimal processing times
also allow consecutive enhancement of the fragment of the image with
different levels of brightness, which is also an important feature of image
processing. For instance, in Belousov–Zhabotinsky-type media this prop-
erty of the system enabled Rambidi et al. (2002) to restore individual
components of the picture when the components overlap. Therefore, we
trust that considering the temporal evolution of the image loaded in our
network could give rise to other interesting image-processing operations.

3. Image Encryption

Cryptography is another field of application of nonlinear systems. In fact, AQ4
the chaotic behavior of nonlinear systems can sometimes produce chaotic
like waveforms that can be used to encrypt signals for secure commu-
nications (Cuomo and Oppenheim, 1993; Dedieu et al., 1993). Even if
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many attempts to break the encryption key of these cryptosystems and to
retrieve the information have been reported (Short and Parker, 1998;
Udaltsov et al., 2003), cryptography based on the properties of chaotic
oscillators still attracts the attention of researchers because of the promis-
ing applications of chaos in the data transmission field (Kwok and Tang,
2007).

Contrary to most studies, in which the dynamics of a single element
are usually considered, we propose here a strategy of encryption based on
the dynamics of a chain of nonlinear oscillators. More precisely, we con-
sider the case of a noisy image loaded as the initial condition in the inertia
network introduced in Section II.B. In addition, we add a uniform noise
over [−0.1; 0.1] to the weak-contrast picture of the Coliseum represented
in Figure 9a. Since the pixels of the noisy image assume a gray level in the
range [−0.1; 0.3], an appropriate change of scale is realized to reset the
dynamics of the gray levels to [0; 0.2]. The resulting image is then loaded
as the initial condition in the network. For the sake of clarity, the filtered
images are presented at different processing times with the corresponding
system response in Figure 12.

Before the optimal time, we observe the behavior described in
Section III.A.1: the image goes through local minima and maxima of con-
trast until the optimum time topt = 1.64 × 10−3, where the best contrast
enhancement is realized (Figure 12a).

Next, for processing times exceeding topt, the noisy part of the image
seems to be amplified while the coherent part of the image begins to
be increasingly less perceptible (see Figure 12b and 12c obtained for
t = 3.28 × 10−3 and t = 6.56 × 10−3). Finally, for longer processing times,
namely, t = 8.24 × 10−3 and t = 9.84 × 10−3, the noise background has
completely hidden the Coliseum, which constitutes an image encryption.

Note that this behavior can be explained with the response of the sys-
tem, as represented below each filtered image in Figure 12. Indeed, until
the response of the system versus the initial condition does not display
a “periodic-like” behavior, the coherent part of the image remains per-
ceptible (Figure 12a and 12b). By contrast, as soon as a “periodicity”
appears in the system response, the coherent image begins to disappear
(Figure 12c). Indeed, the response in Figure 12c shows that four pixels
of the initial image with four different gray levels take the same final
value in the encrypted image (see the arrows). Therefore, the details of
the initial image, which corresponds to the quasi-uniform area of the
coherent image, are merged and thus disappear in the encrypted image.
Despite the previous merging of gray levels, since noise induces sudden
changes in the gray levels of the initial image, the noise conserves its ran-
dom feature in the encrypted image. Moreover, since the system tends to
enlarge the range of amplitude, the weak initial amount of noise is strongly
amplified whenever the processing time exceeds topt. The periodicity of
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FIGURE 12 Encrypted image and the corresponding response of the nonlinear
oscillators network for different times exceeding topt . (a): Enhancement of contrast of
the initial image for t = topt = 1.64 × 10−3. (b): t = 3.28 × 10−3. (c): t = 6.56 × 10−3.
(d): t = 8.24 × 10−3. (e): t = 9.84 × 10−3. Parameters: m = 2.58, α = 1.02, ω0 = 1.

the system response can then be increased for longer processing times
until only the noisy part of the image is perceptible (Figure 12d and 12e).
A perfect image encryption is then realized.

To take advantage of this phenomenon for image encryption, the coher-
ent information (the enhanced image in Figure 12a), must be restored using
the encrypted image of Figure 12e. Fortunately, owing to the absence of
dissipation, the nonlinear systems is conservative and reversible. It is thus
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possible to revert to the optimal time—when the information was the most
perceptible.

However, the knowledge of the encrypted image is not sufficient to com-
pletely restore the coherent information, since at the time of encryption,
the velocity of the oscillators was not null. Consequently, it is neces-
sary to know both the position and the velocity of all particles of the
network at the time of encryption. The information then can be resto-
red solving numerically Eq. (23) with a negative integrating time step
dt = −10−6.

Under these conditions, the time of encryption constitutes the encryp-
tion key.

B. Electronic Implementation

The elementary cell of the purely inertial system can be developed accord-
ing to the principle of Figure 13 (Morfu et al., 2007). First, a polynomial
source is realized with analog AD633JNZ multipliers and classical invert-
ing amplifier with gain −K. Taking into account the scale factor 1/10 V−1

of the multipliers, the response of the nonlinear circuit to an input voltage

VT 1W 0

Wi

m

AD633JN AD633JN

m 2 α

2K

2K

m 1 �

(Wi 2 m)(Wi 2 m 1 �)/10

P (Wi) 5 (Wi 2 m 1 �)(Wi 2 m)(Wi 2 m 2 �)K2/100

1 
R2C2

2 ee
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R2C2 eeWi 5 2 P (Wi)

i

FIGURE 13 Sketch of the elementary cell of the inertial system. m and α are adjusted
with external direct current sources, whereas −K is the inverting amplifier gain
obtained using TL081CN operational amplifier. The 1N4148 diode allows introduction
of the initial condition W0

i .
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Wi is given by

P(Wi) = K2

100

(
Wi − m

)(
Wi − m − α

)(
Wi − m + α

)
, (24)

where the roots m, m − α, m + α of the polynomial circuit are set with
three different external direct current (DC) sources. As shown in Figure 14,
the experimental characteristic of the nonlinear source is then in perfect
agreement with its theoretical cubic law [Eq. (24)].

Next, a feedback between the input/output of the nonlinear circuits is
ensured by a double integrator with time constant RC such that

W = − K2

100R2C2

∫ ∫ (
Wi − m + α

)(
Wi − m − α

)(
Wi − m

)
dt. (25)

Deriving Eq. (25) twice, the voltage Wi at the input of the nonlinear circuit
is written as

d2Wi

dt2 = − K2

100R2C2

(
Wi − m + α

)(
Wi − m − α

)(
Wi − m

)
, (26)

which corresponds exactly to the equation of the purely inertial systemAQ5
(13) with

ω0 = K/(10RC). (27)
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FIGURE 14 Theoretical cubic law in Eq. (24) in solid line compared to the experi-
mental characteristic plotted with crosses. Parameters: m = 2.58 V , α= 1.02 V , K = 10.
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Finally, the initial condition W0
i is applied to the elementary cell via

a 1N4148 diode with threshold voltage VT = 0.7 V. We adjust the diode
anode potential to W0

i + VT with an external DC source with the diode
cathode potential initially set to W0

i . Then, according to Section III, the
circuit begins to oscillate in the range [W0

i ; 2m − W0
i ], while the potential

of the diode anode remains VT + W0
i . Assuming that m > W0

i /2, which is
the case in our experiments, the diode is instantaneously blocked once the
initial condition is introduced. Note that using a diode to set the initial
condition presents the main advantage to “balance” the effect of dissi-
pation inherent in electronic devices. Indeed, the intrinsic dissipation of
the experiments tends to reduce the amplitude of the oscillations W0

i . As
soon as the potential of the diode cathode is below W0

i , the diode con-
ducts instantaneously, introducing periodically the same initial condition
in the elementary cell. Therefore, the switch between the two states of the
diode presents the advantage of refreshing the oscillation amplitude to
their natural value as in absence of dissipation.

In summary, the oscillations are available at the diode cathode and
are represented in Figure 15a for two different initial conditions, namely,
W0

1 = 0 V (top panel) and W0
2 = 0.2 V (bottom panel). As previously expla-

ined, the way to introduce the initial condition allows balancing the
dissipative effects since the oscillation remains with the same ampli-
tude, namely in the range [0 V; 5.34 V] for the first oscillator with ini- AQ6
tial condition 0, and [0.2 V; 5.1 V] for the second one. Moreover, these
ranges match with fairly good agreement the theoretical predictions pre-
sented in Section II.B.2, that is [0 V; 5.16 V] for the first oscillator and
[0.2 V; 4.96 V] for the second one. Figure 15a also reveals that the two
oscillators quickly achieve a phase opposition at the optimal time topt =
1.46 ms instead of 1.64 ms as theoretically established in Section II.B.2. The
oscillations difference between the two oscillators in Figure 15b reaches
local minima and maxima in agreement with the theoretical behavior
observed in Section III. A maximum of 5.1 V is obtained correspond-
ing to the phase opposition W1(topt) = 0 V and W2(topt) = 5.1 V. There-
fore, the weak difference of initial conditions between the oscillators
is strongly increased at the optimal time topt. Despite a slight discrep-
ancy of 11% for the optimal time, mainly imputable to the component
uncertainties, a purely inertial nonlinear system is then implemented
with the properties of Section III.

To perfectly characterize the experimental device, we now focus on
the response of the nonlinear system to different initial conditions in
the range [0 V; 0.2 V]. The plot of the voltage reached at the optimal
time topt = 1.46 ms versus the initial condition is compared in Figure 16
to the theoretical curve obtained for the optimum time defined in
Section II.B.2, namely, 1.64 ms. The experimental response of the system is
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FIGURE 15 (a): Temporal evolution of two elementary cells of the chain with
respective initial conditions W0

1 = 0 V (top panel) and W0
2 = 0.2 V (bottom panel).

(b): Evolution of the voltage difference between the two oscillators. Parameters:
K = 10, R = 10 K�, C = 10 nF, m = 2.58 V , α = 1.02 V , topt = 1.46 ms.
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FIGURE 16 Response of the system to a set of initial conditions W0
i ∈ [0; 0.2] at the

optimal time. The solid line is obtained with Eqs. (20), (21), and (27) setting the time to
the theoretical optimal value 1.64 ms, the initial condition varying in [0; 0.2 V]. The
crosses are obtained experimentally for the corresponding optimal time 1.46 ms.
Parameters: R = 10 K�, C = 10 nF, m = 2.58 V , α = 1.02 V , K = 10.
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then qualitatively confirmed by the theoretical predictions, which allows
establishing the validity of the experimental elementary cell for the contrast AQ7
enhancement presented in Section III.A.1.

Finally, we also propose to investigate the response of the system after
the optimum time, since it allows the extraction of gray levels. In order to
enhance the measures accuracy, we extend the range of initial conditions
to [0, 0.5 V] instead of [0, 0.2 V]. The corresponding experimental optimal
time becomes topt = 564 μs, whereas the theoretical ones, deduced with
the methodology in Section II.B.2, is 610 μs. The resulting theoretical and
experimental responses are then plotted in Figure 17a, where a better
agreement is effectively observed compared to Figure 16.
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FIGURE 17 Theoretical response of the purely inertial system (solid line) compared
to the experimental ones (crosses) for 4 different times and for a range of initial
conditions [0; 0.5 V]. Parameters: R = 10 K�, C = 10 nF, m = 2.58 V , α = 1.02 V ,
K = 10. (a) Experimental time t = 564 μs corresponding to the theoretical time
t = 610 μs. (b) Experimental time t = 610 μs and theoretical time 713 μs.
(c) Experimental time t = 675 μs and theoretical time 789 μs. (d) Experimental
time t = 720 μs and theoretical time 841 μs.
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We have also reported the experimental device response for three
different times beyond the optimal time topt = 564 μs in Figure 17b, c,
and d—namely, for the experimental times t = 610 μs, t = 675 μs, and
t = 720 μs. Since a time scale factor 610/564 = 1.1684 exists between the
experimental and the theoretical optimal time, we apply this scale factor
to the three previous experimental times. It provides the theoretical times
713 μs, 789 μs, and 841 μs. For each of these three times, we can then com-
pare the experimental response to the theoretical one deduced by letting
the initial condition vary in [0; 0.5 V] in Eqs. (20), (21), and (27). Despite
some slight discrepancies, the behavior of the experimental device is in
good agreement with the theoretical response of the system for the three
processing times exceeding the optimal time. Therefore, the extraction
of gray levels, presented in Section III.A.2, is electronically implemented
with this elementary cell.

IV. REACTION-DIFFUSION SYSTEMS

A. One-Dimensional Lattice

The motion Eq. (4) of the nonlinear mechanical chain can also describe the
evolution of the voltage at the nodes of a nonlinear electrical lattice. This
section is devoted to the presentation of this nonlinear electrical lattice.

The nonlinear lattice is realized by coupling elementary cells with lin-
ear resistors R according to the principle of Figure 18a. Each elementary
cell consists of a linear capacitor C in parallel with a nonlinear resistor
whose current-voltage characteristic obey the cubic law

INL(u) = βu(u − Va)(u − Vb)/(R0VaVb), (28)

where 0 < Va < Vb are two voltages, β is a constant, and R0 is the analog
to a weighting resistor.

R R R RUn21

R
NL

R
NL

D0

D1

R1

R2

R4

R4

R3

D2

R
NL

Un Un11

C C C

i

U

1Vcc

2Vcc

(a) (b)
FIGURE 18 (a) Nonlinear electrical lattice. (b) The nonlinear resistor RNL.
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FIGURE 19 Current-voltage characteristics of the nonlinear resistor. The theoretical
law [Eq. (28)] in the solid line is compared to the experimental data plotted with
crosses. The dotted lines represent the asymptotic behavior of the nonlinear resistor.
Parameters: R0 = 3.078 K�, Vb = 1.12 V , Va = 0.545 V , β = 1.

The nonlinear resistor can be developed using two different methods.
The first method to obtain a cubic current is to consider the circuit of
Figure 18b with three branches (Binczak et al., 1998; Comte, 1996). A linear
resistor R3, a negative resistor, and another linear resistor R1 are succes-
sively added in parallel thanks to 1N4148 diodes. Due to the switch of
the diodes, the experimental current-voltage characteristic of Figure 19
asymptotically displays a piecewise linear behavior with successively a
positive slope, a negative one, and finally a positive one.

This piecewise linear characteristics is compared to the cubic law
[Eq. (28)], which presents the same roots Va, Vb, and 0 but also the same
area below the characteristic between 0 and Va. This last conditions leads
to β = 1 and R0 = 3.078 K� (Morfu, 2002c).

An alternative way to realize a perfect cubic nonlinear current is to
use a nonlinear voltage source that provides a nonlinear voltage P(u)=
βu(u − Va)(u − Vb)/(VaVb)+ u as shown in Figure 20 (Comte and Marquié,
2003).

This polynomial voltage is realized with AD633JNZ multipliers and clas-
sical TL081CN operational amplifiers. A resistor R0 ensures a feedback
between the input/output of the nonlinear source such that Ohm’s law
applied to R0 corresponds to the cubic current in Eq. (28):

P(u)− u
R0

= INL(u). (29)

As shown in Figure 21, this second method gives a better agreement with
the theoretical cubic law [Eq. (28)].
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FIGURE 20 Realization of a nonlinear resistor with a polynomial generation circuit.
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FIGURE 21 Current-voltage characteristics of the nonlinear resistor of Figure 20.
Parameters: β = −10 VaVb, Va = −2 V , Vb = 2 V .

Applying Kirchhoff’s laws, the voltage Un at the nth node of the lattice
can be written as

C
dUn

dτ
= 1

R

(
Un+1 + Un−1 − 2Un

) − INL(Un), (30)

where τ denotes the experimental time and n = 1 . . .N represents the node
number of the lattice.

Moreover, we assume zero-flux or Neumann boundary conditions,
which involves for n = 1 and n = N, respectively,

C
dU1

dτ
= 1

R

(
U2 − U1

) − INL(U1), (31)

C
dUN

dτ
= 1

R

(
UN−1 − UN

) − INL(UN). (32)
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Next, introducing the transformations

Wn = Un

Vb
, D = R0

R
αβ, t = τ

R0αCβ
, (33)

yields the discrete Nagumo equation in its normalized form,

dWn

dt
= D

(
Wn+1 + Wn−1 − 2Wn

) + f (Wn). (34)

Therefore, an electronic implementation of the overdamped network
presented in Section II.A is realized.

B. Noise Filtering of a One-Dimensional Signal

One of the most important problems in signal or image processing is
removal of noise from coherent information. In this section, we develop
the principle of nonlinear noise filtering inspired by the overdamped
systems (Marquié et al., 1998). In addition, using the electrical nonlinear
network introduced in Section IV.A, we also present an electronic imple-
mentation of the filtering tasks.

1. Theoretical Analysis

To investigate the response of the overdamped network to a noisy sig-
nal loaded as an initial condition, we first consider the simple case of a
constant signal with a sudden change of amplitude. Therefore, we study
the discrete normalized Nagumo equation

dWn

dt
= D

(
Wn+1 + Wn−1 − 2Wn

) + f (Wn), (35)

with f (Wn) = −Wn(Wn − α)(Wn − 1) in the specific case α = 1/2. Further-
more, the initial condition applied to the cell n is assumed to be uniform
for all cells, except for the cell N/2, where a constant perturbation b0

is added; namely:

Wn(t = 0) = V0 ∀n �= N
2

WN/2(t = 0) = V0 + b0. (36)

The solution of Eq. (35) to the initial condition in Eq. (36) can be expressed
with the following form

Wn(t) = Vn(t)+ εbn(t). (37)
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Inserting Eq. (37) in Eq. (35), we collect the terms of order 0 and 1 in ε

with the reductive perturbation methods to obtain the set of differential
equations (Taniuti and Wei, 1968; Taniuti and Yajima, 1969):

dVn

dt
= D(Vn+1 + Vn−1 − 2Vn)+ f (Vn) (38)

dbn

dt
= D(bn+1 + bn−1 − 2bn)− (3V2

n − 2Vn(1 + α)+ α)bn (39)

Assuming that Vn is a slow variable, Eq. (38) reduces to

dVn

dt
= f (Vn), (40)

which provides the response of the system to a uniform initial condition
V0 (see details in Appendix A):

V(t) = 1
2

⎛

⎜⎝1 + V0 − 1
2√

(V0 − 1
2 )

2 − V0(V0 − 1)e− t
2

⎞

⎟⎠ . (41)

Next, to determine the evolution of the additive perturbation, it is
convenient to consider a perturbation under the following form:

bn(t) = In(2Dt)g(t), (42)

where In is the modified Bessel function of order n (Abramowitz and
Stegun, 1970). Substituting Eq. (42) in Eq. (39), and using the property
of the modified Bessel function,

dIn(2Dt)
dt

= D(In+1 + In−1), (43)

we obtain straightforwardly

dg
dt

= −2Dg −
[

3V2
n − 2Vn(1 − α)+ α

]
g, (44)

that is,

dg
g

= −2Ddt −
[

3V2
n − 2Vn(1 − α)+ α

]
dt. (45)
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Noting that

df (Vn)

dt
= −

[
3V2

n − 2Vn(1 − α)+ α

]
dVn

dt
, (46)

and deriving Eq. (40) versus time, we derive

V ′′
n

V ′
n

= −
[

3V2
n − 2Vn(1 − α)+ α

]
, (47)

where V ′
n and V ′′

n denote the first and second derivative versus time.
Combining Eq. (47) and Eq. (45) allows expression of g(t) as:

g(t) = Ke−2Dt dVn

dt
, (48)

where K is an integrating constant.
Deriving Eq. (41), we obtain g(t) and thus the evolution of the

perturbation:

bn(t) = K
In(2Dt)e−2Dte−t/2

8

V0
(

V0 − 1
2

)
(V0 − 1)

[ (
V0 − 1

2

)2 − V0(V0 − 1)e−t/2
]3/2 . (49)

Writing bn(t = 0) = b0
n provides the value of the integrating constant K.

The evolution of the perturbation bn(t) is then ruled by:

bn(t) = b0
n

8
In(2Dt)e−2Dte− t

2

[ (
V0 − 1

2

)2 − V0(V0 − 1)e− t
2

] 3
2

. (50)

Finally, in the case of multiple perturbations, the perturbation at the nth

node of the lattice follows as

bn(t) =
∑

n′

b0
n′
8

In′−n(2Dt)e−2Dte− t
2

[ (
V0 − 1

2

)2 − V0(V0 − 1)e− t
2

] 3
2

, (51)

where In′−n is the modified Bessel function of order n′ − n.
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Eq. (41) shows that the evolution of the constant background does not
depend on the coupling D. By contrast, Eq. (51) shows that the coupling D
can be tuned to speed up the diffusion of the perturbation without affect-
ing the constant background. Therefore, in signal-processing context, this
property can be used to develop a noise filtering tool validate.

2. Theoretical and Numerical Results

In order to validate the theoretical analysis developed in Section IV.B.1,
we have solved numerically Eq. (35) using a fourth-order Runge–Kutta
algorithm with an integrating time step dt = 10−3. Moreover, a uniform
initial condition V0 = 0.4 is loaded for all the N = 48 cells of the net-
work except for the 24th cell. Indeed, for this cell, an additive perturbation
b0 = 0.2 is superimposed onto the constant background V0 in order to
match exactly the initial condition [Eq. (36)] considered in the theoretical
Section IV.B.1.

We have investigated the evolution of both the constant background
and the perturbation versus time. In Figure 22, the numerical results plot-
ted with (•) signs match with perfect agreement the theoretical results
predicted by Eqs. (41) and (51).

Moreover, the curve (a) of Figure 22 shows that the constant back-
ground given by Eq. (41) is unaffected by the nonlinear systems regardless
of the coupling value D. By contrast, the behavior of the system for the
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FIGURE 22 (a) Temporal evolution of a uniform initial condition U0 = 0.4 applied to
the entire network. (b) Temporal evolution of the perturbation applied to the cell
n = 24 for D = 0.5 and b0 = 0.2. (c) Temporal evolution of the perturbation applied
to the cell n = 24 for D = 5 and b0 = 0.2. Solid line: theoretical expressions of
Eqs. (41) and (51); (•) signs: numerical results.
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additive perturbation b0 depends on the coupling parameter D (curves (b)
and (c) in Figure 22). Indeed, for weak coupling values, namely, D = 0.5,
the perturbation slowly decreases and seems to be quasi-unchanged,
whereas for D = 5, the curve (c) exhibits a greater decreasing behavior.
After time t = 0.4, the perturbation is significantly reduced for D = 5.
Therefore, the coupling parameter D can be tuned to speed up the dif-
fusion of the perturbation without disturbing the constant background.
Furthermore, the time acts as a parameter that adjusts the filtering of the
perturbation.

The state of the lattice for two different processing times is shown in
Figure 23a and b for the previous coupling values, that is, D = 5 and
D = 0.5, respectively. The initial perturbation represented in the dotted
line (curve (I)) has almost disappeared for the specific value of the cou-
pling D = 5 and for a processing time t = 2 (Figure 23a, curve (III)). As
expected, curve (III) of Figure 23b shows that the perturbation is not fil-
tered for D = 0.5 and for the same processing time t = 2. Furthermore, in
both cases the constant background is slowly attracted by the nearest stable
state—0 in our case.

Note that the spatiotemporal views of Figure 24 also reveal that the noise
filtering is performed for D = 5 and a processing time t = 2.

Finally, to validate the processing task realized by the overdamped sys-
tem, we propose to remove the noise from a more complex signal—a noisy
sinusoïdal signal. The signal is first sampled with a total number of samples
corresponding to the size of the overdamped network, namely, N. Next, a
serial to parallel conversion is realized to load the N samples at the nodes
of the 1D lattice. Therefore, we are led to consider the distribution of initial
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constant perturbation at two different processing times. (•) signs: numerical results;
solid line: theoretical expression in Eq. (51). (a): D = 5; (b): D = 0.5. (I) initial
condition for t = 0, (II) state of the lattice for t = 1, (III) state of the lattice for
t = 2.
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conditions of Figure 25a in relation to

xn = A cos
(

2π
2n
N

)
+ 1

2
+ ηn, (52)

where ηn is a discrete white gaussian noise of root mean square RMS ampli-
tude σ = 0.15. A and 2/N represent, respectively, the amplitude and the
frequency of the coherent signal.

First we numerically investigate the response of the network with the
coupling D = 0.5. As in the case of a constant background corrupted
by a local perturbation, the system is unable to remove the noise from
the sinusoidal signal for both processing times presented in Figure 25b
and d. By contrast, for the favorable value of the coupling D = 5, the
noise is completely filtered at the processing time t = 1 as shown in
Figure 25e.

3. Experimental Results

To validate the electronic implementation of the nonlinear noise filtering
tool, we consider the nonlinear electrical lattice introduced in Section IV.A
with the nonlinear resistor of Figure 18b. In order to match the coupling
value D = 5 and D = 0.5, the coupling resistor R is set to R = 300� and
R = 3 K�, respectively. Moreover, all results are presented in normalized
units using the transformation Eq. (33) to allow direct comparison with
the theoretical analysis of Section IV.B.2. First, we experimentally report in
Figure 26 the temporal evolution of the set of initial conditions consisting
of a constant signal locally corrupted by a perturbation. As predicted in
the theoretical section, the constant background is unaffected regardless
of the coupling value (curve (a)), whereas when the coupling is adjusted
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FIGURE 25 Noise filtering of a one-dimensional signal with an overdamped nonlinear
network. (a): Noisy sinusoidal signal sampled and loaded as the initial condition at
the nodes of the lattice. σ = 0.15, N = 48, and A = 0.264. (b), (c), (d), and (e)
correspond to the filtered signal obtained for the following couples of processing time
t and coupling D: (b) (t = 0.4, D = 0.5); (c) (t = 1, D = 0.5); (d) (t = 0.4, D = 5);
(e) (t = 1, D = 5).

to its favorable value D = 5, the perturbation can be removed after a
normalized processing time t = 0.4 (curve (c)). This result is also con-
firmed by the spatial response of the system at two different processing
times. Indeed, as shown in Figure 27, the state of the lattice for t = 2 and
t = 4 provides the signal without the perturbation only if the coupling D
is chosen to equal 5.

Finally, we propose to filter the noisy sinusoidal signal of Figure 28a.
After a processing time t = 0.6, the noise is completely removed for the
coupling D = 5 (Figure 28c), which is not the case if the coupling is set
to D = 0.5 (Figure 28b). Therefore, with a suitable choice of both pro-
cessing time and resistor coupling, a noise filtering tool inspired by the
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FIGURE 26 (a) Temporal evolution in normalized units of a uniform initial condition
W0 = 0.4 applied to the network. (b) Temporal evolution of the perturbation applied
to the cell n = 24 for b0 = 0.2 and D = 0.5 corresponding to a coupling resistor
R = 3 K�. (c) Temporal evolution of the perturbation applied to the cell n = 24 for
b0 = 0.2 and D = 5 corresponding to a coupling resistor R = 300�. C = 33 nF.
Nonlinearity parameters β = 1, Vb = 1.12V , Va = 0.545V involving α = 0.49.
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FIGURE 27 Response of the lattice to a uniform initial condition corrupted by a
constant perturbation at two different processing times. Parameters: C = 33 nF,
Vb = 1.12 V , Va = 0.545 V , α = 0.49. (a): R = 300� that is D = 5; (b): R = 3 K� that
is D = 0.5. (I) initial condition for t = 0, (II) state of the lattice for
t = 2(τ = 0.1 ms), (III) state of the lattice for t = 4 (τ = 0.2 ms).

properties of the nonlinear overdamped network is electronically imple-
mented. Moreover, according to Eq. (33), the processing time could be
adjusted by the value of the capacitor C to match real-time processing
constraints.
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FIGURE 28 Noise filtering of a one-dimensional signal with an electrical nonlinear
lattice. (a): Normalized noisy sinusoidal signal given by Eq. (52) loaded as initial
condition at the nodes of the lattice. σ = 0.15, N = 48, and A = 0.264. (b): Filtered
signal obtained for a processing time t = 0.6 (τ = 92.3 μs) and a coupling D = 0.5
(that is, R = 3 K�). (c): Filtered signal obtained for a processing time t = 0.6
(τ = 92.3 μs) and a coupling D = 5 (that is R = 300�). Parameters: C = 100 nF,
β = 1, Vb = 1.12 V , Va = 0.545 V .

C. Two-Dimensional Filtering: Image Processing

We now numerically extend the properties of the 1D lattice to a 2D network.
Consider a CNN whose cell state Wi, j, representing the gray level of the
pixel number i, j, follows the following set of equations:

dWi, j

dt
= f (Wi, j)+ D

∑

(k, l)∈Nr

(
Wk, l − Wi, j

)
, i, j = 2 . . .N − 1, 2 . . .M − 1,

(53)

where Nr = {(i − 1; j), (i + 1, j), (i, j + 1), (i, j − 1)} is the set of the four
nearest neighbors, N × M the image size, and f (Wi, j) represents the non-
linearity. The boundary conditions for the edges of the image express

dW1, j

dt
= f

(
W1, j

) + D
(
W1, j−1 + W2, j + W1, j+1 − 3W1, j

)
, j = 2..M − 1

dWN, j

dt
= f

(
WN, j

) + D
(
WN, j−1 + WN−1, j + WN, j+1 − 3WN, j

)
,

j = 2..M − 1
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dWi, 1

dt
= f (Wi, 1)+ D

(
Wi−1, 1 + Wi+1, 1 + Wi, 2 − 3Wi, 1

)
, i = 2..N − 1

dWi, M

dt
= f (Wi, M)+ D

(
Wi−1, M + Wi+1, M + Wi, M−1 − 3Wi, M

)
,

i = 2..N − 1

while for the image corners, we consider the two nearest neighbors, that is

dW1, 1

dt
= f (W1, 1)+ D

(
W2, 1 + W1, 2 − 2W1, 1

)
,

dWN, M

dt
= f (WN, M)+ D

(
WN, M−1 + WN−1, M − 2WN, M

)
,

dWN, 1

dt
= f (WN, 1)+ D

(
WN−1, 1 + WN, 2 − 2WN, 1

)
,

dW1, M

dt
= f (W1, M)+ D

(
W2, M + W1, M−1 − 2W1, M

)
.

1. Noise Filtering

The initial condition applied to the cell i, j of the network corresponds to
the initial gray level W0

i, j of the noisy image shown in Figure 29. The image
after a processing time t is obtained noting the state Wi, j(t) of all cells of
the network at this specific time t (Comte et al., 1998).

Figure 30 shows the filtered image obtained at the processing times t = 1,
t = 3, t = 6, t = 9 and for the coupling values D = 0.075, D = 0.1, D = 0.2,
and D = 0.3, respectively. The bistable behavior of the system established
in Section II.A.1 involves a natural evolution of the image toward the two
stable states of the system—0 and 1. Thus, as time increases, the image
evolves into a black-and-white pattern. Therefore, to achieve correct noise
filtering, the coupling parameter and the processing time must be adjusted.

FIGURE 29 Noisy image of the Coliseum.
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(m) (n) (o) (p)
FIGURE 30 Noise filtering of the image represented in Figure 29. (a)−(d). Filtered
image obtained for D = 0.075 and for the respective processing times t = 1, t = 3,
t = 6, and t = 9. (e)−(h). Filtered image obtained for D = 0.1 and for the respective
processing times t = 1, t = 3, t = 6, and t = 9. (i)−(l). Filtered image obtained for
D = 0.2 and for the respective processing times t = 1, t = 3, t = 6, and t = 9. (m)−(p).
Filtered image obtained for D = 0.3 and for the respective processing times t = 1,
t = 3, t = 6, and t = 9.
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For the lowest coupling value D = 0.075, Figure 30 shows that the noise
is not removed before the image is binarized. For the coupling parameter
D = 0.2 and D = 0.3, even if the noise is quickly removed, the filtered image
becomes blurred for t = 6 and t = 9 (Figure 30k, l, o, p). Therefore, these
settings of the coupling parameter are inappropriate. In fact, Figure 30f
and g shows the filtered image with the best setting of the coupling and
processing time: a coupling D = 0.1 and the processing times t = 3 or t = 6.
Indeed, the filtered images are neither blurred nor binarized. Moreover,
the system not only removes the noise, it also enhances the contrast of the
initial image.

2. Edge Filtering

Because of a strong relationship between edge and object recognition, edge
detection constitutes one of the most important steps for image recogni-
tion. Indeed, scene information often can be interpreted because of theAQ8
edges. Classical edge detection algorithms are based on a second-order
local derivative operator (Gonzalez and Wintz, 1987), whereas nonlinear
techniques of edge enhancement are inspired mainly by the properties of
reaction-diffusion media (Chua and Yang, 1988; Rambidi et al., 2002).

We propose a strategy of edge detection based on the propagation prop-
erties of the nonlinear diffusive medium (Comte et al., 2001). The image
loaded in the 2D network is the black-and-white picture Figure 31a.

We established in Section II.A.2 that a 1D lattice modeled by the Nag-
umo equation supports kink and anti-kink propagation owing to the bis-
table nature of the nonlinearity. Indeed, if the nonlinearity threshold
parameter α < 1/2, the stable state 1 propagates, while if α > 1/2, the sta-
ble state 0 propagates. Therefore, extending this property to a 2D network
allows calculation of either erosion for α > 1/2 or dilation for α < 1/2,
which are basic mathematical morphology operations, commonly per-
formed in image processing (Serra, 1986). Moreover, if the initial image is
subtracted from the image obtained with the network obeying to Eq. (53),
we can deduce the contours of the image after a processing time t.
Figure 31b shows the contour of a black-and-white image and its profile
obtained with this method. The profile of the contour shows that its reso-
lution is ∼10 pixels, which is insufficient to allow good edge enhancement
of a more complex image.

This poor resolution is mainly attributable to the spatial expansion of
the kink that results from the initial condition loaded in the lattice. Since
the kink expansion reduces with the coupling, a natural solution consists
of lowering the coupling. Unfortunately, the existence of the propagation
failure effect provides a lower bound of the coupling D∗ and thus hin-
ders contour detection with good resolution. An alternative solution can
be developed by using a nonlinearity that eliminates the propagation fail-
ure effect. Indeed, it has been shown for dissipative media (Bressloff and
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FIGURE 31 Contour detection of a black square in a white background. (a) Initial
image and its profile. (b) Edge detection of the object and its profile obtained with the
standard cubic nonlinearity [Eq. (5)] with threshold α= 1/3. Processing time t = 4,
D = 1. (c) Contour and the corresponding profile obtained with the nonlinearity
[Eq. (54)]. Processing time t = 4, D = 1.

Rowlands, 1997) or for systems where both inertia and dissipation are
taken into account (Comte et al., 1999) that an inverse method allows def-
inition of a nonlinear function for which exact discrete propagative kinks
exist. Especially in the purely dissipative case, such function expresses

f (Wi, j) = Dε
[
(1 − a2/2)− (a0Wi, j + a1)

2
]

− Da2(a0Wi, j + a1)

1 − (a0Wi, j + a1)2
+ 2D(a0Wi, j + a1), (54)
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where ε= 0.5, a2 = 0.9, a0 = 1.483, and a1 = − 0.742 to ensure that the zeros
of the nonlinearity remain 0, 1/3, and 1. As expected, when this new nonlin-
earity is numerically implemented, the resolution of the detected contour
in Figure 31c is reduced to 3 pixels.

Note that edge enhancement with the nonlinear overdamped network
is not restricted to a black-and-white image. Indeed, the concept is based
on the propagation properties of the system and can be extended to the
case of an image with 256 gray levels. For instance, we propose to show
numerically the contour enhancement of Figure 31a by considering the
methodology used for the edge detection of the black-and-white picture.

The simulation results are summarized in Figure 32 for different pro-
cessing times in the favorable case of the nonlinear function [Eq. (54)]. It is
clear that again the time allows adjustment of the quality of the process-
ing. Indeed, for processing times below t = 1, the edges of the image details
are not revealed, whereas for processing times exceeding 1.33, the details
begin to disappear. Furthermore, as times increases, the contours of the
image are increasingly thinner owing to the propagation mechanism. The
best contour enhancement is thus performed when the image details have
not yet disappeared and when the enhanced contours remain sufficiently
thin. In fact, this situation corresponds to the intermediate processing time
t = 1.33 (Figure 32e).

3. Extraction of Regions of Interest

As explained in the previous subsections, in the case of cubic nonlinearity,
a nonlinearity threshold α= 0.5 allows noise filtering, while considering
α �= 0.5 provides the contour of an image with poor resolution. Moreover,
the nonlinearity f (W) can be determined using an inverse method to opti-
mize the filtering task. Therefore, the choice of the nonlinearity is of crucial
interest in developing interesting and powerful image-processing tools.
In this section, we go one step further by proposing a new nonlinearity
to extract the regions of interest of an image representing the soldering
between two rods of metal (Morfu et al., 2007).

The noisy and weakly contrasted image of Figure 33 presents four
regions of interest:

• First, the two rods of metal constitute the background of the image in
light gray

• The stripe in medium gray at the center of the image represents the
“soldered joint”

• A white spot corresponds to a “projection” of metal occurring during the
soldering of the two rods of metal

• A dark gray spot represents a gaseous inclusion inside the soldering
joint.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)
FIGURE 32 Contour enhancement of a an image with 256 gray levels realized with the
modified nonlinearity in Eq. (54). (a) Initial image. (b)−(j). Filtered image for the
respective processing times t = 0.33, t = 0.66, t = 1, t = 1.33, t = 1.66, t = 2, t = 2.33,
t = 2.66, and t = 3.
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FIGURE 33 Noisy and weakly contrasted image of soldering between two rods of
metal. The image histogram is represented at the right.
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FIGURE 34 Mechanical point of view of the bistable overdamped network used for
image processing. (a) The pixel with coordinates i, j and gray level Wi, j is analog to an
overdamped particle coupled by springs of strength D to its four nearest neighbors.
(b) The particle is attracted in one of the two wells of the bistable potential according
to the resulting elastic force applied by the four coupled particles.

a. Limit of the Bistable Network. We first discuss the inability of the
bistable overdamped network ruled by Eq. (53) to extract the four objects of
the image. As explained in Section II.A.1, the bistability is ensured by using
the cubic nonlinearity in Eq. (3). According to the mechanical description
of the bistable system presented in Section II, a pixel of the image is analog
to a particle experiencing a double-well potential φ(W)= − ∫ W

0 f (u)du and
coupled to its four nearest neighbors by springs of strength D. As schemat-
ically shown in Figure 34, the particle with initial position W0

i, j is attracted
in one of the two wells of potential depending on the competition between
the resulting elastic force and the nonlinear force f (Wi, j).

D
∑

(k, l)∈Nr

(
Wk, l − Wi, j

)
, (55)
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(a) (b) (c)
FIGURE 35 Filtered images obtained with the bistable overdamped network
described by Eqs. (3) and (53) in the case α = 1/2. Coupling parameter: D = 0.05.
Processing times: (a) t = 4; (b) t = 10; (c) t = 3000.

This property of the system allows sufficiently large time, the network is
organized near the two stable states set by the nonlinearity, namely, 0 and 1.
In image-processing context, it means that the resulting filtered image tends
to be an almost black-and-white pattern. Figure 35 confirms this evolution
of the filtered image versus the processing time since, when a cubic non-
linearity is considered, a quasi – black-and-white image is obtained at the
time t = 3000 (Figure 35c).

Note that for none of the proposed processing times was the bistable
system able to properly remove the noise and to enhance the contrast
of the regions of interest. Indeed, for t = 4 the noise is reduced but the
details of the image begin to disappear (Figure 35a). In particular the pro-
jection is merged into the background for t = 10, indicating that the bistable
nature of the system destroys the coherent information of the initial image
(Figure 35b). Therefore, the inability of the overdamped system to extract
the regions of interest is directly related to the bistable nonlinear force f (W).

b. The Multistable Network. To solve this problem and to maintain the
coherent structure of the image, we introduce a nonlinearity with a
multistable behavior. For instance, the following nonlinear force

f (W) = −β(n − 1) sin
[
2π(n − 1)W

]
(56)

derives from a potential φ(W) = − ∫ W
0 f (u)du, which presents n wells and a

potential barrier height between two consecutive potential extrema defined
by β/π. This potential is represented in Figure 36 in the case of n = 5 wells
of potential.

The multistable behavior of the network obeying to Eq. (53) with the
sinusoidal force in Eq. (56) can be established by considering the uncoupled
case.
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FIGURE 36 Multistable potential represented for β = 9.82 × 10−2 and n = 5. The
potential barrier between two consecutive extrema is β/π.

Setting D = 0 in Eq. (53), we obtain

dWi, j

dt
= −β(n − 1) sin

[
2π(n − 1)Wi, j

]
. (57)

The stability analysis of the system can be performed with the methodology
developed in Section II.A.1 by considering the roots of the sinusoidal force
in Eq. (56).According to the sign of the derivative of the sinusoidal force, we
can straightforwardly deduce that the unstable steady states of the system
are given by

Wthk = (2k + 1)/(2(n − 1)) with k ∈ Z, (58)

while the stable steady states are defined by

W∗
k = k/(n − 1) with k ∈ Z. (59)

Eq. (57) is solved in Appendix C to provide the temporal evolution of an
overdamped particle experiencing the multistable potential of Figure 36 in
the uncoupled case.

If k denotes the nearest integer of (n − 1)W0
i, j, and W0

i, j the initial position
of the particle, the displacement Wi, j(t) of the particle is expressed as

Wi, j(t) = 1
π(n − 1)

[
arctan

(
tan

(
π(n − 1)W0

i, j
)
e−β(n−1)22πt

)]
+ k

n − 1
.

(60)

The multistable behaviour of the system is illustrated in Figure 37,
which shows the temporal evolution of a particle submitted to differ-
ent initial conditions in the range [0; 1]. It is clear that the unstable
steady states of the system Wthk act as thresholds, while the stable
steady states W∗

k correspond to attractors. Indeed, the final state of the
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FIGURE 37 Temporal evolution of an overdamped particle experiencing the
multistable potential. Parameters: n = 5 and β= 0.25. Solid line: theoretical expression
of Eq. (60); open circles: numerical results obtained solving Eq. (57).

particle depends on the value of the initial condition compared to the
thresholds Wthk . In particular if we neglect the transient, the asymp- AQ9
totic behavior of the uncoupled network is reduced to the following
rules

if
2k − 1

2(n − 1)
< W0

i, j <
2k + 1

2(n − 1)
Wi, j(t �→ +∞) = k

(n − 1)
.

(61)

Therefore, the asymptotic functioning [Eq. (61)] of the uncoupled network
proves the multistable behavior of the system.

We now numerically use this multistable feature to extract the regions of
interest of the image. In the coupled case, a pixel with initial gray level W0

i, j
can take one of the n possible stable states according to the competition
between the sinusoidal force and the resulting elastic force. The specific
case n = 5 is shown numerically in Figure 38.

Unlike the bistable network, the noise is quickly removed without
disturbing the coherent structure of the image consisting of “the projec-
tion,” “the gaseous inclusion,” “the background,” and the “soldered joint”
(Figure 38a for t = 0.2 and (b) for t = 2). Next, for a sufficiently longer time,
namely t = 5000, the image no longer evolves and each defect of the sol-
dering appears with a different mean gray level corresponding to one of
the five stable steady states of the system (Figure 38c). An extraction of
the interest regions of the image is then performed with this overdamped
network.
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(a) (b) (c)
FIGURE 38 Filtered images obtained with the multistable overdamped network
described by Eqs. (53) and (56). Nonlinearity parameters: β = 9.82 × 10−2, n = 5.
Coupling parameter: D = 1.6. Processing times: (a) t = 0.2; (b) t = 2; (c) t = 5000.
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FIGURE 39 Electronic sketch of the multistable nonlinear network. R Represents the
coupling resistor, C a capacitor, and RNL a nonlinear resistor. INL denotes the
nonlinear current and Ui, j the voltage of the cell with coordinates i, j.

c. Electronic Implementation of the Multistable Network. The electronic
implementation of the multistable network is realized according to the
methodology of Figure 39 by coupling elementary cells with linear
resistors.

Each elementary cell includes a capacitor in parallel with a nonlinear
resistor whose current-voltage characteristics can be approximated by the
sinusoïdal law on the range [−2V; 2V]:

INL(U) � IM sin(2πU). (62)

The methodology in the Section IV.A to realize the cubic nonlinearity
with a polynomial source can be used to obtain the sinusoidal law in
Eq. (62). First, a least-square method at the order 15 allows us to fit the
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sinusoidal expression in Eq. (62) by a polynomial law P(U) in the range
[−2V; 2V]. This provides the coefficients of the polynomial source P(U)
by generating the sinusoidal current

INL(U) = P(U)/R0. (63)

The experimental current-voltage characteristics is compared in
Figure 40b to the theoretical expression in Eq. (62). The weak discrepancies
observed between the theoretical and experimental laws can be reduced
by increasing the order of the least-square method. However, enhancing
the agreement with the sinusoidal law presents the main disadvantage to
considerably increasing the number of electronic components used for the
realization of the nonlinear resistor. Nevertheless, at the order 15, the exper-
imental nonlinear current presents nine zeros and its derivative ensures
the existence of five stable steady states and four unstable steady states. It
is thus not of crucial interest to increase the order of the approximation,
provided that the nonlinear resistor exhibits the multistability.
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FIGURE 40 (a) Response of an elementary cell of the multistable network to
different initial conditions in the uncoupled case. The plot of the theoretical
expression [Eq. (60)] in the solid line is compared to the experimental results
represented by crosses. (b) Nonlinear current-voltage characteristics. The sinusoidal
law [Eq. (62)] in the solid line matches the experimental characteristics shown by plus
sign (+). The component values are R0 = 2 K�, C = 390 nF, IM = 2mA. The zeros of
the sinusoidal current defines the four unstable states Uth1, Uth2, Uth3, and Uth4, which
correspond to thresholds and the five stable steady states U∗
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5 ,
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Applying the Kirchhoff laws to the electrical network of Figure 39, we
deduce the differential equation, which rules the evolution of the voltage
Ui, j at the nodes (i, j)

C
dUi, j

dτ
= −INL(Ui, j)+ 1

R

∑

(k, l)∈Nr

(Uk, l − Ui, j). (64)

In Eq. (65), Nr = {(i; j − 1), (i; j + 1), (i − 1; j), (i + 1; j)} denotes the
neighborhood and τ represents the experimental time.

Next, the transformations

τ = tR0C, β = IMR0

(n − 1)2
, Ui, j = Wi, j(n − 1)− 2 and D = R0

R
, (65)

lead to the normalized equation

dWi, j

dt
= P(Wi, j(n − 1)− 2)

n − 1
+ D

∑

(k, l)∈Nr

(
Wk, l − Wi, j

)
. (66)

The normalization is completed by noting that for Wi, j ∈ [0; 1], that is, for
Ui, j ∈ [−2V; 2V],

P
[

Wi, j(n − 1)− 2
]

= −R0INL

[
Wi, j(n − 1)− 2

]

� −β(n − 1)2 sin(2π(n − 1)Wi, j). (67)

The experimental network described by Eq. (66) appears as an ana-
log simulation of the normalized multistable network used for image
processing.

Let us finally reveal the multistable behaviour of the elementary cell of
the experimental network by investigating its response to different initial
conditions in the uncoupled case. In addition, to allow a direct comparison
with the theoretical expression (60), all the results are presented in normal-
ized units in Figure 40a. First, we note that the component uncertainties
does not explain the observed discrepancies. The poor correlation between
the experimental results and the theoretical prediction is allocated to the
nonlinearity provided by the nonlinear resistor, which does not exactly fol-
low the sinusoidal law in Eq. (62). Nevertheless, the multistable property
of the system is experimentally established. Indeed, there exist four thres-
hold values, Uth1, Uth2, Uth3, and Uth4 that allow determination of the final
state of the elementary cell among the five possible stable steady states,
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U∗
1 , U∗

2 , U∗
3 , U∗

4 , and U∗
5 . Therefore, the image-processing task inspired by

the multistable property of the system is implemented with the electronic
device in Figure 39.

V. CONCLUSION

This chapter has reported a variety of image-processing operations AQ10
inspired by the properties of nonlinear systems. Considering a mechanical
analogy, we have split the class of nonlinear systems into purely inertial sys-
tems and overdamped systems. Using this original description, we have
established the properties of nonlinear systems in the context of image
processing.

For purely inertial systems, image-processing tasks such as contrast
enhancement, image inversion, gray level extraction, or image encryption
can be performed. The applications of the nonlinear techniques presented
herein are similar to those developed by means of chemical active media
(Teuscher and Adamatzky, 2005), even if these last media are rather
overdamped than inertial. In particular, the dynamics of the nonlinear
oscillators network, which enables contrast enhancement, can also be used
to reveal “hidden images.” Indeed, “hidden images” are defined as frag-
ments of a picture with brightness very close to the brightness of the image
background. Despite a weak difference of brightness between the hidden
image and the image background, our nonlinear oscillators network take
advantage of its properties to reveal the hidden image.

Another interesting property of this network is that is consecutively
reveals fields of the image with increasing or decreasing brightness at
different processing times. We trust that this feature, also shared by
Belousov–Zhabotinsky chemical media, may have potential applications
in image analysis in medicine (Teuscher and Adamatzky, 2005).

Finally, the noise effects in this purely inertial network lead to cryp-
tography applications. Unlike classical cryptography devices, built with
chaotic oscillators, we have proposed an encryption scheme based on the
reversibility of our inertial system. Moreover, the encryption key, which
ensures the restoration of the initial data, is the time of evolution of the
data loaded in the nonlinear network. Therefore, the main advantage of
our device is that it allow an easy change of the encryption key.

The properties of strongly dissipative or overdamped systems can also
give rise to novel image-processing tools. For instance, we have shown
the possibility of achieving noise filtering, edge detection, or extraction
of regions of interest of a weakly contrasted picture. With regard to noise
filtering applications based on reaction-diffusion media, the processing is
based on the transient behavior of the network since the filtered image
depends on the processing times. By contrast, the extraction of regions of
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interest presents the main advantage of independence from the processing
time since the filtering is realized when the network reaches a stationary
pattern. Therefore, this feature can allow an automatic implementation of
the processing task.

VI. OUTLOOKS

A. Outlooks on Microelectronic Implementation

For each nonlinear processing example, we have attempted to propose an
electronic implementation using discrete electronic components. Even if
these macroscopic realizations are far from real practical applications, they
present the primary advantage of validating the concept of integration of
CNN for future development in microelectronics.

Indeed, in recent years the market for solid-state image sensors has
experienced explosive growth due to the increasing demands for mobile
imaging systems, video cameras, surveillance, or biometrics. Improve-
ments in this growing digital world continue with two primary image
sensor technologies: charge coupled devices (CCD) and CMOS sensors.AQ11
The continuous advances in CMOS technology for processors and DRAMs
have made CMOS sensor arrays a viable alternative to the popular CCD
sensors. New technologies provide the potential for integrating a signifi-
cant amount of VLSI electronics into a single chip, greatly reducing the cost,
power consumption, and size of the camera (Fossum, 1993; Fossum, 1997;
Litwiller, 2001; Seitz, 2000). In past years, most research on complex CMOS
systems has dealt with the integration of sensors providing a processing
unit at chip level (system-on-chip approach) or at column level by integrat-
ing an array of processing elements dedicated to one or more columns
(Acosta et al., 2004; Kozlowski et al., 2005; Sakakibara 2005; Yadid-Precht
and Belenky, 2003). Indeed, pixel-level processing is generally dismissed
because pixel sizes are often too large to be of practical use. However, as
CMOS image sensors scale to 0.18-μm processes and below, integrating aAQ12
processing element at each pixel or group of neighboring pixels becomes
feasible. More significantly, using a processing element per pixel offers the
opportunity to achieve massively parallel computations and thus the abil-
ity to implement full-image systems requiring significant processing such
as digital cameras and computational sensors (El-Gamal et al., 1999; Loinaz
et al., 1998; Smith et al., 1998). The latest significant progress in CMOS
technologies have made possible the realization of vision systems on chip
(VSoCs). Such VSoCs are eventually targeted to integrate within a semicon-
ductor substrate the functions of optical sensing, image processing in space
and time, high-level processing, and the control of actuators. These chips
consist of arrays of mixed-signal processing elements (PEs), which operate
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in accordance with single-instruction multiple-data (SIMD) computing
architectures.

The main challenge in designing a SIMD pixel parallel sensor array is
the design of a compact, low-power but versatile and fully programmable
processing element. For this purpose, the processing function can be
based on the paradigm of CNNs. CNNs can be viewed as a very suitable
framework for systematic design of image-processing chips (Roska and
Rodriguez-Vazquez, 2000). The complete programmability of the inter-
connection strengths, its internal image-memories, and other additional
features make this paradigm a powerful beginning for the realization
of simple and medium-complexity artificial vision tasks (Espejo et al.,
1996). Some proof-of-concept chips operating on preloaded images have
been designed (Czuni et al., 2001; Rekeczky et al., 1999). Only a few
researchers have integrated CNN on real vision chips. As an example,
Espejo (Espejo et al., 1998) reports a 64 × 64-pixel programmable compu-
tational sensor based on a CNN. This chip is the first fully operational
CNN vision-chip reported in the literature that combines the capabilities
of image transduction, programmable image-processing, and algorithmic
control on a common silicon substrate. It has successfully demonstrated
operations such as low-pass image filtering, corner and border extrac-
tion, and motion detection. More recently, other studies have focused
on the development of CMOS sensors including the CNN paradigm
(Carmona et al., 2003; Petras et al., 2003). The chip consists of 1024 pro-
cessing units arranged into a 32 × 32 grid and contains approximatively
500,000 transistors in a standard 0.5-μm CMOS technology. However,
in these pioneering vision chips, the pixel size is often greater than
100 μm × 100 μm. Obviously, these dimensions cannot be considered as
realistic dimensions for a real vision chip. A major part of this crucial
problem should be resolved in future years by using the newly emerg-
ing CMOS technologies. Indeed, CMOS image sensors directly benefit
from technology scaling by reducing pixel size, increasing resolution, and
integrating more analog and digital functionalities on the same chip with
the sensor. We expect that further scaling of CMOS image sensor tech-
nology and improvement in their imaging performances will eventually
allow the implementation of efficient CNNs dedicated to nonlinear image
processing.

B. Future Processing Applications

The nonlinear processing tools developed in this chapter are inherited from
the properties of homogeneous media. In the case of applications based on
the properties of reaction-diffusion media, it is interesting to consider the
effects of both nonlinearity and structural inhomogeneities. Indeed, novel
properties inspired by biological systems, which are inhomogeneous rather



CH03-P374219 [13:52 2008/5/5] HAWKES: Advances in Imaging and Electron Physics Page: 136 79–153

136 Saverio Morfu et al.

than homogeneous (Keener, 2000; Morfu et al., 2002a; Morfu et al., 2002b;AQ13
Morfu, 2003), could allow optimizing the filtering tools developed in this
chapter.

For instance, in Section IV.C.1, the noise removal method based on the
homogeneous Nagumo equation provides a blurry filtered image. In addi-
tion, it is difficult to extract the edge of the image with an accurate location.
Indeed, noting that the contours of the image correspond to steplike pro-
files, the diffusive process increases the spatial expansion of the contours.
To avoid this problem, anisotropic diffusion has been introduced to reduce
the diffusive effect across the image contour. This method has been pro-
posed by Perona and Malik (1990) to encourage intraregion smoothing in
preference to interregion smoothing. To obtain this property, Perona and
Malik replaced the classical linear isotropic diffusion equation

∂I(x, y, t)
∂t

= div(∇I), (68)

by

∂I(x, y, t)
∂t

= div(g(‖∇I‖)∇I), (69)

to adapt the diffusion with the image gradient. In Eqs. (68) and (69), I(x, y, t)
represents the brightness of the pixel located at the spatial position (x, y)
for a processing time t, while ‖∇I‖ is the gradient amplitude. Moreover,
the anisotropy is ensured by the function g(‖∇I‖) which “stops” the dif-
fusion across the edges. For instance, Perona and Malik considered the
function

g(x) = 1

1 + x2

K2

, (70)

where K is a positive parameter.
Noting that when x �→ ∞, g(x) �→ 0, the effect of anisotropic diffusion

is to smooth the original image while the contours are preserved. Indeed,
the edge of the image corresponds to brightness discontinuities that lead
to strong values of the image gradient (Black et al., 1998). This interesting
property of anisotropic diffusion is illustrated in Figure 41.

For sake of clarity, the algorithm developed by Perona and Malik is
rather extensively detailed in Appendix D and we discuss here only the
results obtained by filtering the noisy picture in Figure 41a. Contrary to
the isotropic nonlinear diffusion based on the Nagumo equation, the edge
of the image remains well localized for all the processing times presented
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
FIGURE 41 Noise filtering based on anisotropic diffusion. The filtering images are
obtained using the algorithm detailed in Appendix D with the parameters dt = 0.01
and K = 0.09. (a) initial image, (b)−(i) images for the respective processing times t = 1,
t = 2, t = 3, t = 4, t = 5, t = 6, t = 7, and t = 8.

in Figure 41. However, although the noise seems removed for processing
times exceeding t = 5, the contrast of the image is never enhanced. There-
fore, anisotropic diffusion and nonlinear diffusion do not share the same
weakness and it could be interesting to attempt to circumvent the limita-
tions of this two techniques.

For instance, if we compare the continuous Equation (9) of nonlinear dif-
fusion with the anisotropic Equation (69) proposed by Perona and Malik, it
is clear that the anisotropy can be introduced into our system via the cou-
pling parameter D. Moreover, with Perona and Malik’s method, the pixel
brightness does not directly experience the nonlinearity as in our method.
Therefore, the nonlinear noise filtering tool presented in Section IV.C.1
could be more efficient if the interesting properties of anisotropic
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diffusion were also considered by introducing a coupling law. In particular
we expect that the anisotropy preserves the location of the image edges,
while the nonlinearity enhances the image contrast and removes the noise
in the same time.

Finally, we close this chapter by presenting another interesting and
nonintuitive phenomenon that occurs in nonlinear systems under certain
conditions. This effect, known as the stochastic resonance (SR) effect was
introduced in the 1980s to account for the periodicity of ice ages (Benzi
et al., 1982). Since then, the SR effect has been widely reported in a growing
variety of nonlinear systems (Gammaitoni et al., 1998), where it has been
shown that adding an appropriate amount of noise to a coherent signal at
a nonlinear system input enhances the response of the system. Detection
of subthreshold signal using noise has been proven in neural information
process (Longtin, 1993; Nozaki et al., 1999; Stocks and Manella, 2001) and in
data transmission fields (Barbay, et al., 2001; Comte and Morfu, 2003; Duan
and Abbott, 2005; Morfu et al., 2003; Zozar and Amblard, 2003), as well as
information transmission in array such as a stochastic resonator (Báscones
et al., 2002; Chapeau-Blondeau, 1999; Lindner et al., 1998; Morfu, 2003).
Recent studies have also shown that noise can enhance image perception
(Moss et al., 2004; Simonotto et al., 1997), autostereogram interpretation
(Ditzinger et al., 2000), human visual perception by microsaccades in the
retina (Hongler et al., 2003), and image processing (Vaudelle et al., 1998;
Chapeau-Blondeau, 2000; Histace and Rousseau, 2006; Blanchard et al.,
2007). The investigation of noise effects in nonlinear systems is undoubt-
edly of great interest in nonlinear signal processing or in image processing
context (Zozar and Amblard, 1999, 2005).
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FIGURE 42 (a) Initial black-and-white image with p1 = 0.437. (b) Similarity measures
from Eqs. (72) and (73) versus the noise RMS amplitude value σ for Vth = 1.1.
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We thus propose to present the phenomenon of SR using the metho-
dology exposed in proposed by Chapeau-Blondeau (2000). Moreover, to
show a visual perception of the SR effect, we consider the black-and-white
image of Figure 42a, where we note the probability p1 to have a white pixel
and p0 = 1 − p1 the probability to have a black one.

A gaussian white spatial noise ηi, j with RMS amplitude value σ is added AQ14
in each pixel Ii, j of the initial image. The resulting noisy image is then
threshold filtered with a threshold Vth to obtain the image Ib, according to
the following threshold filtering rule:

if Ii, j + ηi, j > Vth then Ibi, j = 1

else Ibi, j = 0. (71)

The similarity between the two images I and Ib can then be quantified by
the cross-covariance (Chapeau-Blondeau, 2000)

CIIb =

〈(
I − 〈

I
〉)(

Ib − 〈
Ib

〉)〉

√〈(
I − 〈

I
〉)2

〉〈(
Ib − 〈

Ib
〉)2

〉 , (72)

or by

RIIb =

〈
IIb

〉

√〈
I2

〉〈
I2
b

〉 , (73)

where < . > corresponds to an average over the images.
These two similarity measures are defined by

RIIb = p1(1 − Fη(Vth − 1))
√

p1

[
p1

(
1 − Fη(Vth − 1)

)
+

(
1 − p1

)(
1 − Fη(Vth)

)] .

and

CIIb = p1(1 − Fη(Vth − 1))− p1q1√
(p1 − p2

1)(q1 − q2
1)

.
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with q1 = p1(1 − Fη(Vth − 1))+ (1 − p1)(1 − Fη(Vth)) and where Fη is the
cumulative distribution function of the noise.

In the case of a gaussian white noise of RMS amplitude σ, the cumulative
distribution function can be expressed as

Fη(u) = 1
2

+ 1
2

er f
(

u√
2σ

)
. (74)

In Eq. (74) the error function is defined by er f (u) = 2√
π

∫ u
0 exp(−t2)dt.

The two quantities expressed in Eqs. (72) and (73) are plotted versus
the RMS noise amplitude σ in Figure 42b, where a resonant-like behavior
reveals the standard stochastic resonance signature. Indeed, there exists
an optimum amount of noise that maximizes the similarity measures in
Eqs. (72) and (73). According to Figure 42b, this optimal noise RMS value
is σ = 0.4.

To validate the similarity measures, we qualitatively analyze the pictures
obtained for different noise amplitudes. It is confirmed in Figure 43 that
the noise optimal value σ = 0.4 allows the best visual perception of the
Coliseum through the nonlinear systems.

Even if the model of human visual perception is more complex than
a standard threshold filtering (Bálya et al., 2002), this simple representa-
tion is convenient to determine analytically the optimum amount of noise
that provides the best visual perception of images via SR. Moreover, the
SR phenomenon is shared by a wide class of nonlinear systems, including
neural networks that also intervene in the process of image perception.
Since neurons are basically threshold devices that are supposed to work
in a noisy environment, the interest of considering noise effect seems to
be of crucial importance in developing artificial intelligence applications
that perfectly mimic the real behavior of nature. Therefore, for the next few
decades we trust that one of the most interesting challenges could be com-
pleting the description of nonlinear models by including the contribution
of noise effects.

(a) (b) (c) (d)
FIGURE 43 (a), (b), (c), (d), Threshold filtered image with the rules (71) and a thres-
hold Vth = 1.1 and with white gaussian noise with respective RMS noise amplitude
σ = 0.1, σ = 0.4, σ = 0.8, σ = 1.4.
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APPENDIX A

Response of a Cell of an Overdamped Network

In the uncoupled case, and forα = 1/2, a particle of displacement W follows

dW
dt

= −W(W − 1
2
)(W − 1). (A1)

Separating the variables in Eq. (A1) yields

2dW
W

− 4dW
W − 1/2

+ 2dW
W − 1

= −dt, (A2)

which can be integrated to obtain

W(W − 1)
(W − 1/2)2

= K exp− 1
2 t, (A3)

where K is an integration constant. Equation (A3) can be arranged as a
second-order equation in W

W2
(

1 − Ke− 1
2 t

)
− W

(
1 − Ke− 1

2 t
)

− 1
4

Ke− 1
2 t = 0. (A4)

Provided that the discriminant is positive, the solutions are given by

W(t) = 1
2

± 1
2

√
1

1 − Ke− 1
2 t

. (A5)

Assuming that initially the position of the particle is W(t = 0) = W0, the
integration constant K can be expressed in the form

K = W0(W0 − 1)

(W0 − 1
2 )

2
. (A6)

Inserting the constant Eq. (A6) in the solution in Eq. (A5) leads to the
following expression of the displacement:

W(t) = 1
2

(
1 ± |W0 − 1

2 |
√
(W0 − 1

2 )
2 − W0(W0 − 1)e− 1

2 t

)
. (A7)
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Assuming that when t �→ +∞, the particle evolves to the steady states
W = 0 for W0 < 1/2 and W = 1 for W0 > 1/2, we finally obtain the
displacement of the particle with initial position W0 as

W(t) = 1
2

(
1 + W0 − 1

2√
(W0 − 1

2 )
2 − W0(W0 − 1)e− 1

2 t

)
. (A8)

APPENDIX B

Recall of Jacobian Elliptic Function

We recall here the properties of Jacobian elliptic functions used in
Section II.B. These three basic functions—cn(u, k), sn(u, k), and dn(u, k)—
play an important role in nonlinear evolution equations and arise from
the inversion of the elliptic integral of first kind (Abramowitz and Stegun,
1970):

u(ψ, k) =
∫ ψ

0

dz
√

1 − k sin2 z
, (B1)

where k ∈ [0; 1] is the elliptic modulus. The Jacobian elliptic functions are
defined by

sn(u, k) = sin(ψ), cn(u, k) = cos(ψ), dn(u, k) =
√

1 − k sin2(ψ). (B2)

This definition involves the following properties for the derivatives:

d sn(u, k)
du

= cn(u, k)dn(u, k),

d cn(u, k)
du

= −sn(u, k)dn(u, k),

d dn(u, k)
du

= −ksn(u, k)cn(u, k). (B3)

Considering the circular function properties, we also have

sn2(u, k)+ cn2(u, k) = 1. (B4)
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Moreover, using the result in Eq. (B2), we obtain the following identity:

dn2(u, k)+ ksn2(u, k) = 1. (B5)

APPENDIX C

Evolution of an Overdamped Particle Experiencing
a Multistable Potential

The equation of motion of an overdamped particle submitted to the
sinusoidal force in Eq. (56) can be expressed as

dW
dt

= −β(n − 1) sin
[

2π(n − 1)W
]

, (C1)

where W represents the particle displacement.
The steady states of the system are deduced from the zeros of the non-

linear force. Using the methodology exposed in Section II.A.1, we can
establish that the roots of the nonlinear force correspond alternatively to
unstable and stable steady states. If k is an integer, the unstable and stable
states of the system are written, respectively, as follows:

Wthk = k
(n − 1)

W∗
k = 2k + 1

2(n − 1)
k ∈ Z. (C2)

Separating the variables of Eq. (C1), we obtain

dW

sin
[

2π(n − 1)W
] = −β(n − 1)dt. (C3)

Using the identity sin(2a) = 2 sin a cos a, Eq. (C3) becomes

dW
tan [π(n − 1)W] cos2 [π(n − 1)W]

= −β(n − 1)dt. (C4)

Next, considering the derivative of the tangent function in Eq. (C4), yields

1
π(n − 1)

∫ t

0

d tan [π(n − 1)W]
tan [π(n − 1)W]

= −
∫ t

0
2β(n − 1)dt. (C5)
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A direct integration of Eq. (C5) gives

tan
[
π(n − 1)W

]
= tan

[
π(n − 1)W0

]
e−β(n−1)22πt, (C6)

where W0 denotes the initial position of the particle.
Inverting the tangent function provides straightforwardly the solution

of Eq. (C1) in the form

W(t) = 1
π(n − 1)

[
arctan

(
tan

(
π(n − 1)W0)e−β(n−1)22πt

)]
+ k

n − 1
,

(C7)

where k is an integer coming from the tangent inversion.
Note that from a physical point of view, k must ensure that the par-

ticle position evolves toward one of the stable states of the system for a
sufficiently long time, that is, when t �→ +∞.

Indeed, for an initial condition between two consecutive unstable steady
states, the asymptotic behavior of the uncoupled network can reduce to the
following rule:

if
2k − 1

2(n − 1)
< W0 <

2k + 1
2(n − 1)

W(t �→ +∞) = k
(n − 1)

(C8)

This rule can be transformed to yield

if k − 1
2
< (n − 1)W0 < k + 1

2
W(t �→ +∞) = k

(n − 1)
(C9)

Finally, identifying Eq. (C7) with Eq. (C9) when t �→ +∞, we deduce
that k must be the nearest integer of W0(n − 1).

APPENDIX D

Perona and Malik Anisotropic Diffusion Algorithm

We recall here the algorithm introduced by Perona and Malik to
compute their method based on anisotropic diffusion equation. The
anisotropic diffusion Eq. (69) can be discretized with the time step dt
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to obtain

It+1
s = It

s + dt
ηs

∑

p∈Nr

g(∇Is, p)∇Is, p. (D1)

In Eq. (D1), It
s represents the brightness of the pixel located at the posi-

tion s in a discrete 2D grid that corresponds to the filtered image after a
processing time t. ηs is the number of neighbors of the pixel s, that is, 4,
except for the image edge, where ηs = 3 and for the image corners where
ηs = 2. The spatial neighborhood of the pixel s is noted Nr. The local gra-
dient ∇Is, p can be estimated by the difference of brightness between the
considered pixel s and its neighbor p:

∇Is, p = Ip − It
s, p ∈ Nr. (D2)

Finally, the description of the system is completed by defining the edge
stopping function g(x) as the Lorentzian function:

g(x) = 1

1 + x2

K2

, (D3)

where K is a positive parameter.
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