
Journal of Systems Architecture 59 (2013) 870–877
Contents lists available at SciVerse ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Efficient smart-camera accelerator: A configurable motion estimator
dedicated to video codec
1383-7621/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.sysarc.2013.05.005

⇑ Corresponding author.
E-mail address: jdubois@u-bourgogne.fr (J. Dubois).
Wajdi Elhamzi a,b, Julien Dubois b,⇑, Johel Miteran b, Mohamed Atri a, Barthelemy Heyrman b,
Dominique Ginhac b

a University of Monastir, Laboratory of ElE, Faculty of Sciences of Monastir, Tunisia
b University of Burgundy, Laboratory Le2i, UMR CNRS 6306, 21000 Dijon, France

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 16 May 2013

Keywords:
Configurable motion estimation
Smart camera accelerator
Fractional Motion Estimation
FPGA
Smart cameras are used in a large range of applications. Usually the smart cameras transmit the video or/
and extracted information from the video scene, frequently on compressed format to fit with the appli-
cation requirements. An efficient hardware accelerator that can be adapted and provide the required cod-
ing performances according to the events detected in the video, the available network bandwidth or user
requirements, is therefore a key element for smart camera solutions. We propose in this paper to focus on
a key part of the compression system: motion estimation. We have developed a flexible hardware imple-
mentation of the motion estimator based on FPGA component, fully compatible with H.264, which
enables the integer motion search, the fractional search and variable block size to be selected and
adjusted. The main contributions of this paper are the definition of an architecture allowing flexibility
and some new hardware optimizations of the architecture of the motion estimation allowing the
improvement of the performances (computing time or hardware resources) compared to the state of
the art. The paper describes the design and proposes a comparison with state-of-art architectures. The
obtained FPGA based architecture can process integer motion estimation on 720�576 video streams at
67 fps using full search strategy, and sub-pel refinement up to 650 KMacroblocks/s.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The smart camera is a label which refers to cameras that have
not only the availability to grab images but also to process them
in real-time. Hence, some hardware accelerators based on a combi-
nation of FPGA, specific circuits (ASIC) and processors are devel-
oped and embedded inside of the camera to reach real-time
[1,2]. Generally, the processing enables useful information to be
extracted from the image and therefore requires a low output
bandwidth [3]. Nevertheless, some smart cameras are still used
to transmit the original video stream (or a part of it) as well as
the results obtained from the embedded processing. For this con-
figuration, the original video stream is frequently compressed to
reduce the required data-bandwidth. The compression is therefore
embedded in the smart camera using a dedicated accelerator. The
adjustment of coding performance that we propose in this paper is
different than state-of-art approaches. The recent MPEG Scalable
Video coding standard (MPEG SVC) [4] aims to encode a high-qual-
ity video bit-stream which contains a subset of bit-streams. Parts
of this subset are dropped to match with the network capacities
used to transfer the video. At reception level, the terminal received
a video stream adjusted to its features (i.e. resolution, frame rate).
Nevertheless, whatever the selected configuration, a high-quality
bit-stream is encoded which represents a high processing charge.
Our approach is to adjust the trade-off between the video coding
performances and processing time at the codec level. At this level,
some standards (i.e. H.264) offer several configurations (named
profiles) and parameters which enable the coding performances
to be adjusted. The flexibility is easily obtained with the software
implementation however it is still a challenge to design a hardware
accelerator which supports several profiles and parameter
modifications.

For instance, Del Bue et al. [5] propose a software implementa-
tion based on a DSP component which enables the compression to
be adjusted according to the information extracted in real-time
from the video scene. Del Bue et al. propose a smart camera which
enables several regions of interest to be detected in the scene and
the coding performances to be adjusted for each of them. The sys-
tem task is to transmit to its base station high quality foreground
data, while trading-off the quality of the background data. Using
a MPEG-4 Simple profile codec, different texture quantifications
are applied on the foreground data and the background data. The

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2013.05.005&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2013.05.005
mailto:jdubois@u-bourgogne.fr
http://dx.doi.org/10.1016/j.sysarc.2013.05.005
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


Table 1
The impacts of the search strategy on the PSNR and the processing time.

PSNRFS � PSNRRS

Average, Min, Max
Processing TimeFS/ Processing TimeRS

Average, Min, Max

0.5 dB, 0.02 dB, 1.13 dB 98.08, 53.69, 214.75

W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877 871
quantification control is efficient for achieving the video coding
adjustment, meanwhile the processing time is fixed. We propose
a similar approach which focuses on the main part of the coding
process (for almost all the standard): the motion estimation (ME)
[6]. The motion estimation is well known to be the most computa-
tion-intensive stage of video coding process. Any improvement on
this stage has therefore impact on the whole video codec’s perfor-
mances. Focusing on the motion estimation adaptation enables
adjustments to be proposed on processing time as well as on the
bit-rate and the PSNR. The processing time tuning represents a
new contribution compared to Del Bue’s approach. This approach
enables the best trade-off between coding performances and the
processing time to be defined by the user. Based on our experience
on H.264 standard, we propose to adjust the motion estimation
performances using three key features: (i) the format of input data
(i.e. the size of the blocks to match), (ii) the integer search method,
(iii) the optional fractional search. These adjustments allows the
user to fit the application’s constraints (image spatial resolution,
frame-rate, bit-rate, PSNR).

The motion hardware accelerators presented in the literature
do not consider the three key features simultaneously. The inte-
ger search stage is compulsory, contrary to the Variable Block Size
Motion Estimation (VBSME) and the Fractional Motion Estimation
(FME) refinement. Both these optional phases enable PSNR to be
significantly increased as discussed in Section 2. Thus, the pro-
posed architecture has been designed to support in particular
these two optional phases. Nevertheless the optional phases, in
particular FME, increase significantly the processing time. Indeed,
the FME represents 45% of the inter-prediction processing time.
Hence, the proposed architecture has been designed to reach
high-performances on the FME phase. The proposed architecture
enables higher throughput in term of Macro-Blocks per second
to be reached compared to state of the art architecture’s perfor-
mances [7,8].

The selection of the integer search method enables the applica-
tion requirements (bit-rate, etc.) to be reached as well as the pro-
cessing time. However, the hardware accelerators focusing on the
integer search [9,10], propose efficient, but fixed architectures
which support either full-search or one reduced search strategy.
Consequently for these solutions, the integer search method can-
not be modified. Our contribution is to propose an architecture
which overcomes this limitation, allowing the user to select the
integer search strategy.

It is still nowadays a challenge to define such an efficient
hardware accelerator which supports such flexibility as well as
high coding performances. Moreover, this accelerator should not
require the whole processing resources of the system as other im-
age processing must be embedded inside of the smart camera.
Therefore, we propose a motion estimation accelerator, fully com-
patible with H.264, which supports several configurations of the
three key features previously mentioned. The main contributions
of this paper are the definition of an architecture allowing flexi-
bility and some new hardware optimizations of the architecture
of the motion estimation allowing to improve the performance
(computing time or hardware resources) compared to the state
of the art. The paper is organized as follows. In Section 2, we ana-
lyze how the search strategy, the optional use of Fractional Mo-
tion Estimation (FME) and the Variable Block Size Motion
Estimation (VBSME) allow the coding performances to be ad-
justed. In Section 3, the motion estimator architecture and the
associated hardware implementation, based on a FPGA compo-
nent, are presented. We describe the two main units of the archi-
tecture: a generic Integer Motion Estimation architecture which
supports user-friendly search strategy selection and the FME
architecture. Finally, the conclusion and future work are dis-
cussed in Section 4.
2. Key features to adjust motion estimation performances

We propose to focus on features of the motion estimation which
represents the key stage of many of the standards (i.e. the powerful
H.264) as well as the most expensive task in term of processing
time.

The main idea in using the ME stage is to predict the next frame
from the previous one, and then to code the prediction error. As the
motion is not generally homogeneous on the whole frame, and also
in order to reduce the processing complexity, the image is split into
macro-blocks. The estimation is then operated on each macro-
block which is searched into the reference frame using usually a
Block Matching Algorithm (BMA). The matching criterion is usually
done by the Sum of Absolute Differences (SAD). The most accurate
vector corresponds to the position which causes SAD to be mini-
mum. At this stage, the optimum corresponds to an integer
position.

Many search algorithms have been developed to propose an
alternative to the exhaustive Full Search approach (FS) where each
position of the macro-block in the search window is considered.
These optimized approaches aim to converge to the best matching
motion vector without considering all possible positions. This
number of points per block to be checked (NSP) is then reduced,
as the algorithm uses predefined search patterns or previously pre-
dicted motion vectors to guide the process. Using these algorithms
impacts the global coding performances (i.e. bit-rate, image quality
and processing time). The improvement of the bit-rate or the im-
age quality is achieved by finding the best possible motion vectors.
Meanwhile, reducing the total search time is achieved by selecting
the proper fast motion estimation method. Nevertheless, the bit-
rate and the image quality can be decreased compared to the FS ap-
proach. For all these algorithms, several search phases are required
to converge to the most accurate vector. For instance, square-
shaped or hexagon-shaped or diamond-shaped search patterns
with different sizes are employed in several fast motion algorithms
such as, Three-Step-Search (TSS) [11], the four step search (4SS)
[12], the hexagon-based search (HEXBS) [13], the Diamond Search
(DS) [14] and the block-based gradient descent search (BBGDS)
[15] algorithms. The aforementioned fast search algorithms are
evaluated in [16] by considering the output PSNR and the process-
ing time. Table 1 summarizes the results of this study. The study is
done considering several videos with different resolution or mo-
tion speeds. Performances depend on the video content. Globally,
all the Reduced Search algorithms (RS) achieve a significant
speed-up compared to FS while maintaining high PSNR as pre-
sented in the Table 1. The user can select a reduced search strategy
to decrease the processing time nevertheless the PSNR may de-
crease for high-motion speed or high texture variation. The largest
decrease obtained in this study is 1.13 dB. The results are con-
firmed by other studies. For instance, the enhanced efficient DS
algorithm, named Modified Diamond Search (MDS), is proposed
and compared with other fast approaches and FS method in [17].
This algorithm achieves significant speed-up compared to FS. In-
deed, on average the processing time decreases by 99% with a neg-
ligible degradation in both PSNR and bit-rate except for high-speed
motion and/or high texture variation where PSNR can decrease by
0.6 dB.



Fig. 1. The top-level view of the proposed motion estimation architecture.

872 W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877
The selection of the integer search algorithm can therefore en-
able the coding performances, as well as the processing time, to
be adjusted by the user to match with application’s constraints.

The second major possible adjustment concerns the type of pre-
cision chosen for position estimation. Indeed, the motion of blocks
usually does not match exactly in the integer positions. So, to find
best matches, fractional position accuracy can be used. If the best
motion vector is a fractional position, an interpolation is needed
to predict the current block. According to [18,7], Fractional Motion
Estimation (FME) upgrades on average the rate distortion effi-
ciency by +4 dB in PSNR and requests 45% of the inter-prediction
processing time as shown in Table 2. In [8,18], authors evaluated
FME in H.264 using several sequences and have shown that using
half or quarter-pel increases image quality.

Another refinement included in recent standards allows the
improvement of the estimation performance: the VBSME [9]. This
method is based on the BMA, combined with a dynamic selection
of the blocks size. The VBSME is carried out in both IME and FME
phases. In H.264, VP8 and other video codec, a 16�16 sized
macro-block can be further partitioned into 16�8, 8�16, 8�8,
8�4, 4�8 and 4�4 sub-blocks. When all sub-blocks are in uniform
motion, all sub-block motion vectors will be the same as the mo-
tion vector for the entire macro-block. Nevertheless, when sub-
blocks partitions are moving in different directions, sub-block mo-
tion vectors can differ significantly from each other and from the
motion vector of the macro-block. Consequently the ME unit must
be able to generate a separate motion vector for each of the sub-
blocks. The advantages of a large block size are (i) simplicity and
(ii) the limited number of vectors that must be encoded and trans-
mitted. However, in areas of complex spatial structures and mo-
tion, better performances can be achieved with smaller block sizes.

Since the image quality, bit-rate and global codec performances
depend on the application and the video content, it is useful to pro-
pose a flexible hardware architecture allowing the user to chose
the algorithm embedded in the smart camera, and eventually to
adapt dynamically the algorithm depending on the events detected
in the scene.
3. Configurable architecture for motion estimation

3.1. Overview of the proposed architecture

The presented architecture aims to propose a flexible solution
to adjust the video stream transferred by the smart camera. The
accelerator is able to support several search strategies at IME stage
and different configurations for FME stage. The Variable Size Block
is available for each of these two stages. The global architecture is
depicted in Fig. 1.

We propose in this paper an improved version of the architec-
ture which basic principles have been presented in [19]. We have
modified the global architecture and improved significantly the
performances of the FME to reach high-level compression rate
that fit with smart camera applications. For IME and FME stages,
the best matching is performed using the 16�16-pixels reference
macro-block and a region extracted from the corresponding
search window. Processing one matching in one cycle is not, from
our point of view, a realistic solution for implementation reasons
(this requires hardware resources and data-bandwidth). A trade-
Table 2
The impacts of the FME on the PSNR and the processing time.

PSNRFME � PSNRFS

Average, Min, Max
Processing TimeFME/
(Processing TimeFS + Processing TimeFME)

4 dB, 2 dB, 6 dB 0.45
off between the hardware resources and the processing time is
obtained by performing, in one cycle, the comparison between a
macro-block row with the corresponding row extracted in the
search window. Therefore one key feature of our architecture is
the embedded cache memories design which provides one row
of macro-block and one row of the search window at each sys-
tem’s clock cycle.

After the best integer motion vector is estimated, the Fractional
Motion Estimation accuracy can start. The half-pel refinements of
the surrounding eight half-search positions are computed, and
then the quarter-pel refinements of eight quarter-search positions
surrounding the best half-search position are computed. The list of
matching positions to be considered is performed by the Address
Generator Unit (AGU) and transferred to the IME and FME mod-
ules. The address generation is regular for FME. The list of ad-
dresses is processed using the results obtained during the integer
estimation. Eight addresses are therefore systematically deter-
mined for each sub-block. For IME the address generation depends
of the selected search algorithm. Using a full search strategy, the
motion detection process is completely regular. Only one genera-
tion phase is required, as all possible positions of the pattern in
the search window are scanned contrary to fast search approaches.
All the fast search strategies are intended to converge gradually in
several phases to the right motion vector. For each phase, the next
set of positions is defined using the results of the previous list of
matching. For all configurations, the address generation can be de-
scribed with two simple schedulers. The one in charge of the FME
address generation uses a simple and fixed strategy, as described
previously. The scheduler in charge of the IME phase can be mod-
ified by the user according to the selected strategy. For IME, two
fixed size 16-pixels rows are respectively extracted from the refer-
ence macro-block and from the search window. The IME architec-
ture presented in Section 3.2 supports VBS and all possible sub-
blocks are processed in parallel. For FME, an interpolation phase
is required, using a set of six-tap filters and bilinear filters respec-
tively for half-pel and quarter-pel refinements. Therefore, the re-
gion to be extracted is slightly larger than the block width. The
pixel number extracted also depends on the selected mode
(16�16, 16�8, 8�8, 8�4, 4�4, etc.). For block’s width equal to
16 pixels, 8 pixels and 4 pixels respectively, 22, 14 and 10 pixels
should be extracted. The sub-block matching is generally esti-
mated sequentially. Yang et al. have proposed in [7] an architecture
which enables two sub-blocks (4�4 or 4�8) to be processed in par-
allel. This principle has been used for our architecture, therefore
the cache memories structure has been modified compared to
[19]: a copy of the search window has been introduced to enable
two simultaneous accesses to two independent regions of this win-
dow. As discussed in Section 3.3, this data redundancy associated
to a modification of the interpolation unit enables two sub-blocks
(4�4 or 4�8 or 8�4 or 8�8 or 8�16) to be processed in parallel
which allows a significant performance improvement compared
to state-of-art to be obtained.



W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877 873
3.2. Integer Motion Estimator supporting variable block size

The architecture of the Processing Unit is a key point of the inte-
ger motion estimation, in terms of hardware resources and pro-
cessing time. Several architectures have been proposed in the
literature, some implementing Fixed Block Size Motion Estimation
(FBSME) based on the FS algorithm, and some implementing
VBSME, as the Propagate Partial SAD [9,20], the SAD Tree [21],
and the Parallel Sub-Tree [22]. Due to data dependency of full
search motion estimation, 1D and 2D systolic arrays are generally
used for efficient implementation of VBSME. One of the first 1D-
systolic PEs-array implementations of VBSME was presented by
Yap and McCanny [9], and later improved upon by Song et al.
[20] and Fatemi et al. [23]. Two dimension array architectures have
also been proposed for high-end application domains, such as
HDTV [10]. All these structures support only FS strategy. Other re-
lated works support DS strategy, but the originality of the unified
PU architecture that we propose is to support several strategies
as well as VBSME.

The IME phase is highly regular therefore the proposed archi-
tecture is based on the Propagate Partial SAD architecture used
in [9,20]. Four kinds of operators are therefore required: absolute
difference, adder, accumulator and comparators. The 16 differ-
ences are added with a six-stage pipelined structure. The 16 accu-
mulators, which are included in this structure, enable all 40 sub-
blocks defined in VBSME to be processed. The described structure
enables a matching to be processed sequentially, row-by-row, in
16 cycles. This architecture is fixed for any search strategy without
any processing time overhead. Indeed, the cache memory which
enables the macro-block and the search window to be stored,
has been designed to provide one macro-block row and one search
window row (selected according the considered address) at each
clock cycle without any latency between any random address. Con-
sequently two random matching can be performed without any la-
tency. Therefore there is not a penalty in term of processing time
between two matching using reduced search instead of FS. The
only constraint is having to include an embedded cache memory
which is present in most of the motion estimation accelerators.
We have implemented two search strategies to provide system
flexibility: Full Search (FS) and Diamond Search (DS). The imple-
mentation has been done on a Virtex6 FPGA target
(6vlx240tff784-3). The proposed architecture can be considered
as a low-cost implementation of a motion estimator. Table 3 shows
the hardware resources requested for our FPGA based implementa-
tion and a comparison between our IME architecture and previ-
ously published ASIC VBSME processors [9,20,23].

All these selected architectures enable a matching to be pro-
cessed row-by-row. Therefore the number of PEs, as well as the
data bandwidth, is reduced compared to the resources required
by the solutions which process a matching in only one step. For
all these lost-cost architectures, the 41 possible motion vectors
are carried out by a common pipelined structure of 16 PEs which
enables a matching to be processed in 16 cycles. A 16�16 search
Table 3
Comparison of VBSME architectures performances. The required hardware resources of th

Ref. Yap’s Song’s

Year 2004 2006
Tech (lm) TSMC 0.13 TSMC 0.18
Searching range 16 � 16 16 � 16
Latency 4096 4096
Gate count 61 k 51.7 k
Freq (MHz) 294 266
Video 720 � 576@45 fps 352 � 288@25
Search strategies FS FS
range can therefore be processed in 4096 cycles. The architecture
described in [23] is original as a 32�32 searching range can be per-
formed. High-clock frequency can be reached due to a pipelined
structure and a pixel truncation technique. Nevertheless the pro-
cess still requires 26624 cycles due to the large searching range
and the higher number of sub-blocks to be performed. The origi-
nality of our approach is to support different search strategies.
Therefore the main challenge was to provide the input data with-
out latency even for two matchings with non-consecutive accesses
in the cache memory. Our implementation frequency reaches
438 MHz that overcomes all mentioned designs, as we use more
recent technology (40 nm). Hence a matching is processed within
36.5 ns. Using a 16�16 search window, 720�576 video streams
can be processed at 67 fps in a FS mode. Meanwhile, using a DS
method and considering a realistic average range of 15–30 match-
ings per macro-block, a 1080 HD video stream can therefore
respectively be processed from 223 down to 111 fps. The IME
implementation results demonstrate that very low-cost architec-
ture can be proposed. Moreover, it obtains real-time performances
for high resolution images using fast search strategies. Meanwhile
the FME is a complex task and is time consuming, therefore in or-
der to obtain high-performances at the system level, the corre-
sponding implementation should be optimized.

3.3. High-speed Fractional Motion Estimator

The FME stage enables sub-pel accuracy to be performed there-
fore the considered search region should be interpolated. As the
half-pel and quarter-pel refinements are generally processed
sequentially, the interpolation is done with two successive filtering
operations. The half-pel and quarter-pel estimation differ mainly
by the interpolation stage. The half-pel refinement requires 6-tap
separable FIR filters which is more complex than the quarter-pel
processing which is performed using only bilinear filters. Each
half-pel value is calculated using six adjacent pixels horizontally
or vertically [18,7]. Once half-pel samples are available, the pixel
values at quarter-pel locations are processed with basic bilinear
weighting of the values at half-pel and integer-pel positions.
Fig. 2 depicts the overall block diagram of the proposed architec-
ture of FME. It consists of two interpolation based units, eight pro-
cessors units, 16 memory units and two comparator units.

In each refinement stage, eight candidates surrounding the
refinement center are evaluated simultaneously using the proces-
sor units. Sixteen classes of interpolated pixels are defined in
[24]. In order to optimize the matching process with the eight pro-
cessors, each class is stored individually. The proposed architecture
requires therefore four memory banks for half-pel processing and
12 banks for the quarter-pel refinement. Each bank is implemented
with dual-port memory embedded into the FPGA component. Only
two memory blocks are required per class. Therefore, the used
hardware resources are still low and suitable for FPGA implemen-
tation. For instance, the 32 memory blocks represent less than 8%
of Virtex 6vlx240 FPGA’s memory blocks. Two comparator units
e proposed architecture are: 1168 slice registers, 1281 slice LUT and 1 BRAM.

Fatemi’s Proposed architecture

2009 2012
TSMC 0.18 Virtex6 0.04
32 � 32 16 � 16
26624 4096
44 k NA
316 438

fps 352 � 288@30 fps 352 � 288@67 fps
FS FS/DS



Fig. 2. Overall FME architecture.

Fig. 3. Half-pel interpolation units.

Table 4
Comparison hardware resources.

Chen’s Yang’s Ta’s Proposed architecture

Version 1 Version 2

Nbr of FIR-H 5 17 9 17 18
Nbr of FIR-V 11 35 19 35 38
Nbr of PUs 9 9 6 16 8

874 W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877
are implemented to enable two sub-blocks to be estimated
simultaneously.

Half-pel interpolation is the most time consuming step of FME.
Many hardware architectures have been proposed to accelerate the
computation of the FME algorithm [18,7,25] and have been imple-
mented in Application Specific Integrated Circuit (ASIC) technol-
ogy. In our design, we propose two versions of a modular
interpolation unit. They provide a trade-off between the processing
time, the redundant interpolation and hardware utilization. Paral-
lel sets of 6-taps FIR horizontal (FIR-H) and vertical (FIR-V) process
the integer input data. In [18], Chen proposes an architecture based
on 4-pixels interpolation unit with nine 4�4 processing units
(PUs). In each refinement stage, nine candidates around the refine-
ment center are evaluated simultaneously. All blocks are decom-
posed into 4�4 sub-blocks during processing. However,
decomposing large blocks into 4�4 blocks brings redundant frac-
tional pixel interpolation. This redundancy problem appears in
the overlapping area of the adjacent interpolation window. To
overcome this problem, Yang [7] proposes a new architecture
based on 16-pixels interpolation unit with nine 16�16 processing
units which removes all the redundant pixel area. Moreover, this
design adopts a short-latency 16-pixels wide interpolation to in-
crease throughput. All block sizes are processed by 16�16 process-
ing units. This architecture enables 4�8 and 4�4 blocks to be
processed in parallel. Hence the memory bandwidth, required for
reading in parallel the reference pixels of search window memory,
becomes very large as mentioned previously. Ta proposes in [25]
an 8-pixels interpolation unit and decomposes all larger blocks
into 8�4 blocks. The redundancy is totally removed except for
the 16-pixels wide block. All these architectures use a sequential
approach: the half-pel is processed followed by the quarter-pel
refinement. The same processing unit is used for both sub-pel
refinements.

To improve the performances, we propose two new approaches.
Both solutions are based on a 16-pixels wide interpolation unit.
The first architecture, we proposed in [19], use a pipeline stage be-



Table 5
Comparison of number of cycles requested for different subblocks.

Sub-block types
block number

Chen’s Yang’s Ta’s Proposed architecture

Version 1 Version 2

Cycles/block Total cycles Cycles/block Total cycles Cycles/block Total cycles Cycles/block Total cycles Cycles/block Total cycles

16 � 16 1 22 � 4 88 22 � 1 22 22 � 2 44 22 � 1 22 22 22
16 � 8 2 14 � 4 112 14 � 1 28 14 � 2 56 14 � 1 28 14 28
8 � 16 2 22 � 2 88 22 � 1 44 22 � 2 44 22 � 1 44 22 � 2 22
8 � 8 4 14 � 2 112 14 � 1 56 14 � 1 56 14 � 1 56 14 � 2 28
8 � 4 8 10 � 2 160 10 � 1 80 10 � 1 80 10 � 1 80 10 � 2 40
4 � 8 8 14 � 1 112 14 � 2 56 14 � 1 112 14 � 1 56 14 � 2 28
4 � 4 16 10 � 1 160 10 � 2 80 10 � 1 160 10 � 1 160 10 � 2 40

Processing
1/2 1/4

Sequentially Sequentially Sequentially Pipeline Sequentially

Latency NA 29 NA 29 29
Half-Pel 41 832 366 552 502 276
Quarter-Pel 41 1664 790 1104 553 610

0

100

200

300

400

500

600

700

Chen
Tech : 0.13µm
Freq : 100 MHz

Gate count : 79.3k

Yang
Tech :0.18µm

Freq : 285 MHz
Gate count : 188.45k

Ta
Tech : 0.18µm
Freq : 290 MHz

Gate count : 93.7k

Proposed architecture V1
Tech : Virtex 6 40nm

Freq : 175 MHz
Slice Register : 13540

Slice LUT : 18034
BRAM : 24

Proposed architecture V2
Tech : Virtex 6 40nm

Freq : 198 MHz
Slice Register : 10676

Slice LUT : 15545
BRAM : 36

kM
B
/s

Throughput 1/2

Throughput 1/4

Fig. 4. Comparison of the FME architectures throughput performances.

W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877 875
tween half-pel and quarter-pel accelerators. Each of them requests
eight processing units. High-performances are obtained for quar-
ter-pel refinement nevertheless this pipelined architecture is obvi-
ously less performant in half-pel. Meanwhile the half-pel accuracy
is sufficient for many smart camera applications. We propose a sec-
ond solution based on the sub-blocks parallel processing which aims
to optimize the half-pel processing, keeping high global perfor-
mances. The proposed architecture processes a maximum number
of two sub-blocks in parallel. This version aims to support any sub-
block sizes therefore the interpolation unit must be modified. As de-
picted in Fig. 3, two concatenated 8-pixels interpolation units oper-
ate in parallel. This architecture consumes 28�2 FIRs (9�2 FIR-H and
19�2 FIR-V) to process 28-pixels integer input data. The number of
required pixels is therefore 28 which is 14 pixels twice.

Table 4 regroups the number of horizontal, vertical FIR’s and
processing units required for the various half-pel interpolation
implementations. Table 5 presents the number of cycles requested
respectively for each kind of sub-block as well as the global perfor-
mances of the different architectures. Chen’s low-cost interpola-
tion unit requires only 16 FIRs and 9 PUs. Each sub-block is
processed sequentially. When block size is wider than 4�4, they
are processed in several stages. Therefore the required number of
cycles for sub-pel refinement is higher than other implementa-
tions. Yang’s design has a 22 input integer pixel, which requires
52 FIRs and 18 PUs. It enables two 4�4 or 4�8 sub-blocks to be
performed simultaneously. Half-pel and quarter-pel refinement is
achieved, for all sub-blocks, respectively in 366 and 790 clock cy-
cles. Ta’s architecture represents a trade-off between complexity
and performances compared to these two previous architectures.
Our pipeline version, noted version 1 in Tables 4 and 5, enables
high-performances to be obtained for quarter-pel processing: the
motion estimation can be performed in 553 cycles for all sub-
blocks that improves Yang’s performances by 30%. In this version,
the interpolation unit is based on Yang’s. The pipelined architec-
ture requires a double number of processors.

Compared to Yang’s architecture, the second solution with the
interpolation modification, noted version 2 in the two Tables, only
requires two extra filters meanwhile improves the processing per-
formances for both sub-pel refinements. The proposed architecture
is able to perform simultaneously two sub-blocks either 8�16,
8�8, 8�4, 4�8 or 4�4. Hence, half-pel and quarter-pel modes
are respectively performed for all 41 sub-blocks in 276 and 610 cy-
cles. We saved respectively about 25% and 23% of processing time
in comparison to Yang’s architecture.



876 W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877
Fig. 4 shows the results of FME architecture implementation, in
terms of hardware resources, system frequency and throughput.
The state-of-art designs are based on similar technology
(0.18 lm) and our implementation uses the 40 nm technology
available on Virtex 6 FPGA (6vlx240tff784-3). We select FPGA tech-
nology to offer a high-flexibility in the implementation of other
processing inside of the smart camera (such as event detection).
Moreover the dynamic or partial reconfiguration available on FPGA
component could represent an interesting solution when selecting
the FME architecture in function of the application. Meanwhile, the
comparison of the hardware resources is difficult as the architec-
tures use different technologies, nevertheless frequency and
throughput can be compared. The implementation of the version
1 and 2 enables a half-pel refinement to be processed respectively
at 329 and 649 KMacroBlocks/s (KMB/s), and quarter-pel at 316
and 325 KMB/s. The implementation of the first version has
slightly lower frequency than the second version. Therefore, the
performances of implementation of the second version is higher
for both configurations, with a significant improvement of 25%
compared to state-of-art performances.
4. Conclusion

The adjustment of processing and/or communication, according
to the events happening in the video scene or some environment
modifications (as a network bandwidth reduction), represents a
major challenge for a new generation of smart cameras. Therefore
the configurable motion estimator represents a key element in a vi-
deo codec which enables such flexibility to be achieved. We have
implemented a motion estimator on a FPGA which is a current tar-
get for smart camera design. The proposed accelerator enables the
integer search strategy to be adjusted and the optional VBSME and
sub-pel refinements to be processed. Moreover, the current imple-
mentation enables high-speed performances to be reached. Hence
for IME, 1080 HD video streams can be processed up to 200 fps
using fast search strategy. Due to a novel FME architecture, the
same video streams can be processed with half-pel and quarter-
pel refinements respectively at frame rate of 41 and 81 fps (respec-
tively around 330 and 650 KMB/s) which represents a significant
improvement (25%) compared with the state-of-art. This solution
can therefore represent an efficient solution for many video coding
applications. Current investigations aim to consider dynamic
reconfiguration to adjust on-line FME architecture.
References

[1] F. Dias Real, F. Berry, Smart Cameras: Technologies and Applications, Smart
Cameras, Springer, New York, 2009. pp. 35–50.

[2] R. Mosqueron, J. Dubois, M. Mattavelli, D. Mauvilet, Smart camera based on
embedded HW/SW coprocessor, EURASIP Journal on Embedded Systems
(2008) 1–13.

[3] R. Mosqueron, J. Dubois, M. Paindavoine, High-speed smart camera with high
resolution, EURASIP Journal on Embedded Systems (2007) 1–15.

[4] H. Schwarz, D. Marpe, T. Wiegand, Overview of the scalable video coding
extension of the H.264/AVC Standard, IEEE Transactions on Circuits Systems
and Video Technology 17 (9) (2007) 1103–1119.

[5] A. Del Bue, D. Comaniciu, V. Ramesh, C. Regazzoni, Smart cameras with real-
time video object generation, in: Proceedings of International Conference on
Image Processing (ICIP), vol. 3, 2002, pp. III-429–III-432.

[6] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264/AVC
video coding standard, IEEE Transactions on Circuits Systems and Video
Technology 13 (7) (2003) 560–576.

[7] C. Yang, S. Goto, T. Ikenaga, High performance VLSI architecture of fractional
motion estimation in H.264 for HDTV, in: Proc. IEEE ISCAS, Greece, 2006, pp.
2605–2608.

[8] Y.H. Chen, T.C. Chen, S.Y. Chien, Y.W. Huang, L.G. Chen, VLSI Architecture
design of fractional motion estimation for H.264/AVC, Journal of Signal
Processing Systems 53 (3) (2008) 335–347.

[9] Y.Ya. Swee, J.V. McCanny, A VLSI architecture for variable block size video
motion estimation, IEEE Transactions on Circuits and Systems for Video
Technology 51 (7) (2004) 384–389.
[10] C.Y. Chen, S.Y. Chien, Y.W. Huang, T.C. Chen, T.C. Wang, L.G. Chen, Analysis and
architecture design of variable block size motion estimation for H.264/AVC,
IEEE Transactions on Circuits and Systems-I: Regular Papers 53 (3) (2006)
578–593.

[11] T. Koga, K. Ilinuma, A. Hirano, Y. Iijima, T. Ishiguro, Motion compensated
interframe coding for video conferencing, in: Proc. Nat. Telecom. Conf., USA,
1981, pp. G5.3.1–G5.3.5.

[12] L.M. Po, W.C. Ma, A novel four-step search algorithm for fast block motion
estimation, IEEE Transactions on Circuits and Systems for Video Technology 6
(3) (1996) 313–317.

[13] C. Zhu, X. Lin, L.P. Chau, Hexagon-based search pattern for fast block motion
estimation, IEEE Transactions on Circuits and Systems for Video Technology 12
(5) (2002) 349–355.

[14] S. Zhu, K.K. Ma, A new diamond search algorithm for fast block matching
motion estimation, IEEE Transactions on Image Process 9 (2) (2000) 287–290.

[15] L. Liu, E. Feig, A block-based gradient descent search algorithm for block
motion estimation in video coding, IEEE Transactions on Circuits and Systems
for Video Technology 6 (4) (1996) 419–422.

[16] Y.G. Lee, J.B. Ra, Fast motion estimation robust to random motions based on a
distance prediction, IEEE Transactions on Circuits and Systems for Video
Technology 16 (7) (2006) 869–875.

[17] Y. Ismail, J. McNeelly, M. Shaaban, M. Bayoumi, Enhanced efficient diamond
search algorithm for fast block motion estimation, in: Proc. IEEE ISCAS, Taipei,
2009, pp. 3198–3201.

[18] T.C. Chen, Y.W. Huang, L.G. Chen, Fully utilized and reusable architecture for
fractional motion estimation of H.264/AVC, in: Proc. IEEE ICASSP, 2004, pp. 9–12.

[19] W. Elhamzi, J. Dubois, J. Miteran, M. Atri, R. Tourki, Hardware implementation
of a configurable motion estimator for adjusting the video coding, in:
Proceedings on Advanced Concepts for Intelligent Vision Systems
(ACIVS2012), Czech Rep., 2012.

[20] Y. Song, Z. Liu, T. Ikenaga, S. Goto, A VLSI architecture for variable block size
motion estimation in H.264/AVC with low cost memory organization, IEICE
Transactions on Fundamentals E89 (12) (2006) 3594–3601.

[21] T.C. Chen, S.Y. Chien, Y.W. Huang, C.H. Tsai, C.Y. Chen, T.W. Chen, L.G. Chen,
Analysis and architecture design of an HDTV720p 30 Frames/s H.264/AVC
Encoder, IEEE Transactions on Circuits and Systems for Video Technology 16
(6) (2006) 673–688.

[22] Z. Liu, Y. Song, Z. Liu, T. Ikenaga, S. Goto, A fine-grain scalable and low
memory cost variable block size motion estimation architecture for
H.264/AVC, IEICE Transactions on Fundamentals E89-C (12) (2006)
1928–1936.

[23] M.R.H. Fatemi, H.F. Ates, R. Salleh, A bit-serial sum of absolute difference
accelerator for variable block size motion estimation of H.264, in: Proc.
Conference on Innovative in Intelligent Systems and Industrial Applications,
2009, pp. 1–4. .

[24] G.A. Ruiz, J.A. Michell, An efficient VLSI architecture of fractional motion
estimation in H.264 for HDTV, Journal of Signal Processing Systems 62 (3)
(2010) 443–457.

[25] N.T. Ta, J.R. Choi, High performance fractional motion estimation in H.264/AVC
based on one-step algorithm and 8�4 element block processing, Signal
Processing: Image Communication 26 (2011) 85–92.

Wajdi Elhamzi is PhD student at the University of
Burgundy (France) and Monastir (Tunisia) since 2009.
He obtained his Master degree in electronics in 2008
from Monastir University. He is involved in FPGA based
hardware implementation of image processing algo-
rithm, and currently focus on motion estimation for
real-time video coding.
Julien Dubois is associated professor at the University
of Burgundy since 2003. He is a member of the Labo-
ratory Le2i (UMR CNRS 6063). His research interests
include real-time implementation, smart camera,
hardware design based on data-flow modeling, motion
estimation and image compression. In 2001, he received
PhD in Electronics from the University Jean Monnet of
Saint Etienne (France) and joined EPFL based in Lau-
sanne (Switzerland) as a project leader to develop a co-
processor, based on FPGA, for a new CMOS camera.

http://refhub.elsevier.com/S1383-7621(13)00072-6/h0005
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0005
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0005
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0010
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0010
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0010
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0015
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0015
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0020
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0020
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0020
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0025
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0025
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0025
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0030
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0030
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0030
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0035
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0035
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0035
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0040
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0040
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0040
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0040
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0045
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0045
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0045
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0050
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0050
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0050
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0055
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0055
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0060
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0060
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0060
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0065
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0065
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0065
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0070
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0070
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0070
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0075
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0075
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0075
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0075
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0080
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0080
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0080
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0080
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0085
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0085
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0085
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0090
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0090
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0090
http://refhub.elsevier.com/S1383-7621(13)00072-6/h0090


W. Elhamzi et al. / Journal of Systems Architecture 59 (2013) 870–877 877
Johel Miteran received the PhD degree in image pro-
cessing from the University of Burgundy, Dijon, France
in 1994. Since 1996, he has been an assistant professor
and since 2006 he has been professor at Le2i, University
of Burgundy. He is now engaged in research on classi-
fication algorithms, face recognition, access control
problem and real time implementation of these algo-
rithms on software and hardware architecture.
Mohamed Atri born in 1971, received his PhD degree in
Micro-electronics from the Science Faculty of Monastir
in 2001. He is currently a member of the Laboratory of
Electronics & Micro-electronics. His research includes
Circuit and System Design, Image processing, Network
Communication, IPs and SoCs.
Barthélémy Heyrman received the PhD degree in
electronics and image processing from Burgundy Uni-
versity, France, in 2005. He is currently an Associate
Professor at the University of Burgundy, France, and a
member of LE2I UMR CNRS 6306 (Laboratory of Elec-
tronic, Computing and Imaging Sciences). His main
research topics are system-on-chip smart camera and
embedded image processing chips.
Dominique Ginhac received the PhD degree in elec-
tronics and image processing from Clermont-Ferrand
University, France, in 1999. He is currently a full Pro-
fessor at the University of Burgundy, France, and
member of LE2I UMR CNRS 6306 (Laboratory of Elec-
tronic, Computing and Imaging Sciences). His main
research topics are image acquisition and embedded
image processing on CMOS VLSI chips.


	Efficient smart-camera accelerator: A configurable motion estimator dedicated to video codec
	1 Introduction
	2 Key features to adjust motion estimation performances
	3 Configurable architecture for motion estimation
	3.1 Overview of the proposed architecture
	3.2 Integer Motion Estimator supporting variable block size
	3.3 High-speed Fractional Motion Estimator

	4 Conclusion
	References


